

Lecture Notes in Artificial Intelligence 2872
Edited by J. G. Carbonell and J. Siekmann

Subseries of Lecture Notes in Computer Science

Gianluca Moro
Claudio Sartori
Munindar P. Singh (Eds.)

Agents and
Peer-to-Peer Computing

Second International Workshop, AP2PC 2003
Melbourne, Australia, July 14, 2003
Revised and Invited Papers

13

Series Editors

Jaime G. Carbonell, Carnegie Mellon University, Pittsburgh, PA, USA
Jörg Siekmann, University of Saarland, Saarbrücken, Germany

Volume Editors

Gianluca Moro
Università di Bologna
Dipartimento di Informatica, Elettronica e Sistemistica (DEIS)
Via Venezia 52, 47023 Cesena, Italy
E-mail: gmoro@deis.unibo.it

Claudio Sartori
Università di Bologna
CSITE - CNR
Viale Risorgimento, 2, 40136 Bologna, Italy
E-mail: claudio.sartori@unibo.it

Munindar P. Singh
North Carolina State University
Department of Computer Science
Raleigh, NC 27695-7535, USA
E-mail: singh@ncsu.edu

Library of Congress Control Number: 2004116524

CR Subject Classification (1998): I.2.11, I.2, C.2.4, C.2

ISSN 0302-9743
ISBN 3-540-24053-5 Springer Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.

Springer is a part of Springer Science+Business Media

springeronline.com

© Springer-Verlag Berlin Heidelberg 2004
Printed in Germany

Typesetting: Camera-ready by author, data conversion by PTP-Berlin, Protago-TeX-Production GmbH
Printed on acid-free paper SPIN: 11365105 06/3142 5 4 3 2 1 0

Preface

Peer-to-peer (P2P) computing is attracting enormous media attention. Typical
applications are file sharing, as in Gnutella, and exploiting distributed computing
power, as in the SETI (Search for Extra Terrestrial Intelligence) project.

The most popular applications at present are limited in their scope, but they
are highlighting some of the key challenges of P2P computing and exposing
the limitations of traditional approaches to addressing such challenges. First,
the peers are autonomous entities: they can cooperatively participate or not
according to their own choice. Second, the peers are heterogeneous, meaning that
in general we would not be justified in making strong assumptions about how
they are designed or how their information structures are conceptually modeled.
The applications of P2P computing go beyond file sharing or load balancing of
computing resources. Understood more generally, P2P computing is a natural
approach to the development of large systems from autonomous, heterogeneous
components. The obvious idea would be for entities to function as peers that
provide services or expose resources for sharing. Services or resources can then
be composed dynamically to yield novel functionalities. Rigorous composition
techniques are a major research direction.

First, let’s consider heterogeneity. One aspect of the above-mentioned tech-
niques for developing P2P systems is dealing with the information structures
of the various peers. Another aspect is dealing with the underlying processes.
How do we ensure that peers are able to share knowledge and able to act in
unison? Addressing both aspects involves modeling the peers appropriately and
reconciling their conceptual differences.

Next, let’s consider autonomy. Since the participants are autonomous and
not governed by any central agency, certain new challenges must be addressed.
One, we need mechanisms for trust and reputation, and, related to these, for
governance and regulation. Two, we need to develop economic environments or
incentive mechanisms that foster knowledge sharing and collaboration, i.e., lead
the peers to prefer cooperative over non-cooperative behaviors in sharing re-
sources. Systems such as Gnutella already suffer from the problem of free riding,
where some participants take advantage of the system but never contribute to
it. What business models would properly support those who contribute or give
an incentive to the peers to cooperate? What techniques would sustain such
business models?

Interestingly and significantly, research on multiagent systems and on large-
scale information systems has at least partially addressed many of the challenges
of P2P systems. The work on information systems has studied the consequences
of heterogeneity of knowledge and process. The work on multiagent systems
has studied the consequences of autonomy. In particular, the basic doctrine of
multiagent systems—that the member agents are autonomous—agrees with what
P2P systems require. Research on topics such as task decomposition, protocols,

VI Preface

economic models involving game theory and decision theory, and coordination
and teamwork all feed naturally into P2P systems.

For the above reasons, this workshop series aims at addressing the following
nonexhaustive list of topics:

– Intelligent agent techniques for P2P computing
– P2P computing techniques for multi-agent systems
– The Semantic Web and semantic coordination mechanisms for P2P systems
– Scalability, coordination, robustness and adaptability in P2P systems
– Self-organization and emergent behavior in P2P systems
– E-commerce and P2P computing
– Participation and contract incentive mechanisms in P2P systems
– Computational models of trust and reputation
– Community of interest building and regulation, and behavioral norms
– Intellectual property rights in P2P systems
– P2P architectures
– Scalable data structures for P2P systems
– Services in P2P systems, including service definition, discovery, filtering,

composition, and so on
– Knowledge discovery and P2P data mining
– P2P-oriented information systems
– Information ecosystems and P2P systems
– Security considerations in P2P networks
– Ad hoc networks and pervasive computing based on P2P architectures and

wireless communication devices.

The workshop series emphasizes discussions about methodologies, models, algo-
rithms and technologies, strengthening the connection between agents and P2P
computing. These objectives are accomplished by bringing together researchers
and contributions from these two disciplines but also from more traditional areas
such as distributed systems, networks, and databases.

This volume is the postproceedings of AP2PC 2003, the 2nd International
Workshop on Agents and P2P Computing,1 which took place in Melbourne
on July 14, 2003 in the context of the 2nd International Joint Conference on
Autonomous Agents and Multi-agent Systems (AAMAS 2003).

This volume is organized according to the sessions held at the workshop.
Besides the invited papers related to the invited talk and to the panel, these
were framed into the following topics:

– Paradigm integration and challenges
– Trust
– Self-organization
– Incentives
– Search and systems
– Adaptive applications

1 http://p2p.ingce.unibo.it/

Preface VII

– Mobile agents

This proceedings brings together papers presented at the workshop, fully
revised to incorporate reviewers’ comments and discussions at the workshop, plus
three invited papers related to the panel. After the call for papers we received
22 submissions. All submissions were reviewed for scope and quality; finally, 11
were accepted as full papers and 6 as short papers. AP2PC 2003 drew over
40 attendees. Given the dual threats of SARS and war this year and logistical
challenges of getting to Melbourne, it is not surprising that this was one of the
better attended workshops at AAMAS.

We express our deepest appreciation to the participants for their lively dis-
cussions. We would like to acknowledge the contributions of the invited speaker,
the authors for their excellent submissions, and the program committee mem-
bers for their diligence in reviewing submissions on a tight schedule. We would
also like to thank the panel chair, Aris M. Ouksel, and the invited panelists,
Sonia Bergamaschi (University of Modena and Reggio-Emilia), Rajkumar Buyya
(University of Melbourne), and Onn Shehory (IBM Haifa). We would like to ac-
knowledge the steering committee for its guidance and encouragement.

This workshop followed the successful first edition, which was held in con-
junction with AAMAS in Bologna in 2002. In recognition of the interdisciplinary
nature of P2P computing, a sister event called the International Workshop on
Databases, Information Systems, and P2P Computing was held in Berlin in
September 2003 in conjunction with the International Conference on Very Large
Data Bases (VLDB).

Gianluca Moro
Claudio Sartori

Munindar P. Singh

Executive Committee

Organizers

Program Co-chairs Gianluca Moro
Dept. of Electronics, Computer Science and Systems,
University of Bologna, Italy

Claudio Sartori
IEIIT-BO-CNR, University of Bologna, Italy

Munindar P. Singh
Dept. of Computer Science,
North Carolina State University, USA

Panel Chair Aris M. Ouksel
Dept. of Information and Decision Sciences,
University of Illinois at Chicago, USA

Steering Committee

The steering committee consists of the above plus the following people:

Karl Aberer, EPFL, Lausanne, Switzerland

Sonia Bergamaschi, Dept. of Science Engineering,
University of Modena and Reggio-Emilia, Italy

Manolis Koubarakis, Dept. of Electronic and Computer Engineering,
Technical University of Crete

Paul Marrow, Intelligent Systems Laboratory,
BTexact Technologies, UK

Program Committee

Karl Aberer, EPFL, Lausanne, Switzerland
Sonia Bergamaschi, University of Modena and Reggio-Emilia, Italy
M. Brian Blake, Georgetown University, USA
Rajkumar Buyya, University of Melbourne, Australia
Ooi Beng Chin, National University of Singapore, Singapore

Organization IX

Paolo Ciancarini, University of Bologna, Italy
Costas Courcoubetis, Athens University of Economics and Business, Greece
Yogesh Deshpande, University of Western Sydney, Australia
Asuman Dogac, Middle East Technical University, Turkey
Boi V. Faltings, EPFL, Lausanne, Switzerland
Maria Gini, University of Minnesota, USA
Chihab Hanachi, University of Toulouse, France
Mark Klein, Massachusetts Institute of Technology, USA
Matthias Klusch, DFKI, Saarbruecken, Germany
Yannis Labrou, PowerMarket Inc., USA
Tan Kian Lee, National University of Singapore, Singapore
Dejan Milojicic, Hewlett-Packard Labs, USA
Alberto Montresor, University of Bologna, Italy
Luc Moreau, University of Southampton, UK
Jean-Henry Morin, University of Geneva, Switzerland
John Mylopoulos, University of Toronto, Canada
Andrea Omicini, University of Bologna, Italy
Maria Orlowska, University of Queensland, Australia
Aris M. Ouksel, University of Illinois at Chicago, USA
Mike Papazoglou, Tilburg University, Netherlands
Terry R. Payne, University of Southampton, UK
Paolo Petta, Austrian Research Institute for AI, Austria
Jeremy Pitt, Imperial College London, UK
Dimitris Plexousakis, Institute of Computer Science, FORTH, Greece
Martin Purvis, University of Otago, New Zealand
Omer F. Rana, Cardiff University, UK
Katia Sycara, Robotics Institute, Carnegie Mellon University, USA
Douglas S. Reeves, North Carolina State University, USA
Thomas Risse, Fraunhofer IPSI, Darmstadt, Germany
Pierangela Samarati, University of Milan, Italy
Christophe Silbertin-Blanc, University of Toulouse, France
Maarten van Steen, Vrije Universiteit, Netherlands
Markus Stumptner, University of South Australia, Australia
Peter Triantafillou, Technical University of Crete, Greece
Anand Tripathi, University of Minnesota, USA
Vijay K. Vaishnavi, Georgia State University, USA
Francisco Valverde-Albacete, Universidad Carlos III de Madrid, Spain
Maurizio Vincini, University of Modena and Reggio-Emilia, Italy
Fang Wang, BTexact Technologies, UK
Gerhard Weiss, Technische Universitaet Muenchen, Germany
Bin Yu, North Carolina State University, USA

X Organization

Sponsors

This workshop would not have been possible without the generous support from
our sponsors, UNI.TU.RIM S.p.A., Fondazione Cassa di Risparmio di Rimini,
and Microsoft. To these we express our gratitude.

Table of Contents

Paradigm Integration and Challenges

Information Acquisition Through an Integrated Paradigm:
Agent + Peer-to-Peer . 1

Beng Chin Ooi, Wee Siong Ng, Kian-Lee Tan, AoYing Zhou

Robustness Challenges in Peer-to-Peer Agent Systems 13
Onn Shehory

Trust

Bayesian Network Trust Model in Peer-to-Peer Networks 23
Yao Wang, Julita Vassileva

Agent-Based Social Assessment of Shared Resources 35
Matthias Nickles, Gerhard Weiß

A Passport-Like Service over an Agent-Based Peer-to-Peer Network 41
Shi-Cho Cha, Yuh-Jzer Joung, Yu-En Lue

Self-Organization

A Robust and Scalable Peer-to-Peer Gossiping Protocol 47
Spyros Voulgaris, Márk Jelasity, Maarten van Steen

Group Formation Among Peer-to-Peer Agents:
Learning Group Characteristics . 59

Elth Ogston, Benno Overeinder, Maarten van Steen,
Frances Brazier

A Pheromone-Based Coordination Mechanism Applied in Peer-to-Peer . . . 71
Kurt Schelfthout, Tom Holvoet

Incentives

Incentive Mechanisms for Peer-to-Peer Systems . 77
Bin Yu, Munindar P. Singh

A Taxonomy of Incentive Patterns –
The Design Space of Incentives for Cooperation . 89

Philipp Obreiter, Jens Nimis

XII Table of Contents

Search and Systems

P2P MetaData Search Layers . 101
Sam Joseph

A Peer-to-Peer Information System for the Semantic Web 113
Sonia Bergamaschi, Francesco Guerra, Maurizio Vincini

G-Grid: A Class of Scalable and Self-Organizing Data Structures
for Multi-dimensional Querying and Content Routing
in P2P Networks . 123

Aris M. Ouksel, Gianluca Moro

Fuzzy Cost Modeling for Peer-to-Peer Systems . 138
Bo Ling, Wee Siong Ng, YanFeng Shu, AoYing Zhou

A P2P Approach to ClassLoading in Java . 144
Daryl Parker, David Cleary

Adaptive Applications

Multi-agent Interaction Technology for Peer-to-Peer Computing
in Electronic Trading Environments . 150

Martin Purvis, Mariusz Nowostawski, Stephen Cranefield,
Marcos Oliveira

Location-Based and Content-Based Information Access
in Mobile Peer-to-Peer Computing: The TOTA Approach 162

Marco Mamei, Franco Zambonelli

K-Trek: A Peer-to-Peer Approach to Distribute Knowledge
in Large Environments . 174

Paolo Busetta, Paolo Bouquet, Giordano Adami, Matteo Bonifacio,
Francesco Palmieri

Mobile Agents

Improving Peer-to-Peer Resource Discovery
Using Mobile Agent Based Referrals . 186

Prithviraj(Raj) Dasgupta

Mobile Agents for Locating Documents in Ad Hoc Networks 198
Khaled Nagi, Iman Elghandour, Birgitta König-Ries

Author Index . 205

Information Acquisition Through an
Integrated Paradigm: Agent + Peer-to-Peer

Beng Chin Ooi1, Wee Siong Ng2, Kian-Lee Tan1, and AoYing Zhou3

1 Department of Computer Science,
National University of Singapore, Singapore

{ooibc, tankl}@comp.nus.edu.sg
2 Singapore-MIT Alliance,

National University of Singapore, Singapore
smangws@nus.edu.sg

3 Department of Computer Science and Engineering,
Fudan University, Shanghai, P.R. China

aoying@fudan.edu.cn

Abstract. Agent computing provides developers with a way to de-
fine problem-solving computation at an abstract level, whereas, the key
strength of current P2P development centers on resource gathering and
defining efficient resource discovery strategies. Integration of the two
paradigms is required for the development of self-evolving, open and
scalable systems. In this paper, we first investigate varieties of P2P facil-
ities that could benefit agent development and discuss broadly different
ways of integration of the two paradigms. Second, we present a proto-
type system, BestPeer, that exploits both agent and P2P computing. In
P2P environments, the schema is typically not given in advance or it
might be implicit in the data. Consequently, it is notably challenging to
acquire, manage and analyze data in order to produce meaningful infor-
mation for decision-making. We next present PeerDB that is built on top
of BestPeer to facilitate data sharing without a global schema.

1 Introduction

Agent and Peer-to-Peer (P2P) are two paradigms that realize the real power of
computing through autonomous, distributed and dynamic systems. These sys-
tems are becoming increasingly popular as they enable users to exchange digital
information and share in problem-solving by participating in complex networks.
In particular, many researchers consider the agent system as an autonomous
problem-solving entity while P2P provides support for pooling resources to-
gether. Merging these two disciplines by adopting the best of each approach
could potentially provide an ultimate solution that is inexpensive, easy to use,
self-learning and modifying, highly scalable and needing no central administra-
tion.

In order to deal with the autonomous, scale and dynamism that charac-
terize P2P and agent systems, a merged paradigm is required that includes

G. Moro, C. Sartori, and M.P. Singh (Eds.): AP2PC 2003, LNAI 2872, pp. 1–12, 2004.
c© Springer-Verlag Berlin Heidelberg 2004

2 B.C. Ooi et al.

self-organization, adaptation and automated information matching, and sup-
port discovering as intrinsic properties. In this paper, we first define different
approaches on merging infrastructures from these two disciplines. Second, we
present BestPeer [1,11], a system that integrates both paradigms to support
fast and easy P2P application development. Our solution incorporates a self-
configurable mechanism whereby a node in the BestPeer network can dynami-
cally reconfigure itself to have direct (logical) connections with peers that benefit
it most.

Finally, we elaborate on an interesting issue based on the integrated
paradigm: how can an agent perform information acquisition in the P2P sys-
tem without relying on global knowledge? We present our experience in ad-
dressing this problem in the context of PeerDB, a full-fledged data management
system that supports fine-grain content-based searching with the help of agent
technologies. Our solution incorporates Information Retrieval (IR) techniques
which enable peers to share data without shared schema. PeerDB employs a
name-based matching technique that matches schema elements by relying on the
user to supply additional information (metadata) in order to reduce mismatch.
PeerDB primarily concerns itself with the online information exploration. Online
information exploration is different from traditional data translation and schema
integration strategies. In the former, results are transient and users are more tol-
erant of mismatch candidates. Schema integration, on the other hand, needs to
ensure certain degree of consistency and accuracy, which in turn, requires more
complicated approaches. PeerDB provides a simple and yet effective approach
for information acquisition in environments with heterogeneous data sources.

2 The Infrastructures

In this section, we shall discuss the strategies for merging infrastructures from
P2P and agent computing.

2.1 Facilities Provided by P2P

The P2P community has contributed much to the development of efficient re-
source discovery and routing strategies. Clearly, an efficient resource discovery
strategy together with query routing strategy forms fundamental problems of
resource sharing. Earlier efforts such as Napster adopt a centralized model of
resource sharing. Here, the central server maintains a master list of all the meta-
data of peers in the network. This metadata is being used for describing data
housed in peers and it might include file name, IP address, line speed and so on.
However, the data is located in the peers. In this case, the servers are simply
playing the role of answering queries and indexing the meta-information submit-
ted by connecting peers. Perhaps this centralized architecture is most similar to
existing development of multi-agent systems [7,6,22,14]. Agents are required to
contact a centralized resource manager for locating the services. However, such
an approach has several limitations. First, there is a single point of failure. In

Information Acquisition Through an Integrated Paradigm 3

additional, maintaining a unified view is computationally expensive and scaling
up can be a serious problem. More recently, several routing mechanisms in pure
decentralized environment have been proposed. For example the Breadth-First-
Traversal [4] (BFT) and distributed hash table (e.g., Chord [21] and CAN [16]).
These facilities may potentially to be reused in agent development for developing
a truly autonomous and decentralized system.

2.2 Merging of Infrastructures: P2P and Agent

There are three broad approaches for merging the two technologies. One is based
on integrating P2P technology to underlying agent systems (the left image of
Figure 1). For instance, a DHT-based [16,21,2] routing strategy could be inte-
grated into an existing agent system for efficient agent routing. This approach is
agent-oriented since it defines P2P as a subset of tools to facilitate efficient rout-
ing of agents. The second approach is a P2P-oriented merging strategy, where
the main idea is to build a proprietary software agent on top of an existing
P2P system (the right image of Figure 1). The third approach operates on three
tiers, with a middleware in between the agent and P2P layers (the centre image
of Figure 1).

Fig. 1. Infrastructure of P2P and Agents

Most of the existing agent systems provide support for agent collaboration
and communication but are not native to P2P technology. The development of
P2P applications based on these platforms would require a longer and more
costly effort. There are several reasons that suggest the limitation of applying
a traditional agent system in a P2P model. First, traditionally, mobile search
agents perform search operations by moving themselves to the site containing
the target information and executing a given task. The agent’s path is either pre-
defined or the agent has knowledge of where to find the services. For example, in
order to find the cheapest airfare, a travel agent is given a set of sites that provide
airfare query services. The agent’s programmers have to know where the agent

4 B.C. Ooi et al.

needs to go and where the next destination is after the task at a site is completed.
However, this may require a pre-defined knowledge of the environment – which
is not always feasible, e.g., there may not exist any pre-defined knowledge of who
is offering a particular service and where. The problem may be solved by inte-
grating P2P query routing strategies into agent systems to form agent-oriented
systems. Obviously, the main drawback concerns the extensibility of the system
to upgrade the services, e.g., incorporating new routing strategies or new P2P
services into the system will cause a major disruption of the system. Moreover,
the whole architecture may possibly become “fatter”, which may in return result
in unpredictable behavior. Also, there may exist several agent systems with P2P
supports but which are unable to communicate with each other. This may be
due to the fact that they employ either different agent communication languages
or different P2P protocols. In apparent recognition of this problem, the agent
community has started to standardize agent communication languages such as
KQML [3] and FIPA ACL [20]; meanwhile, P2P is still evolving. The details of
the agent computing roadmap can be found in [17].

P2P-oriented system have inherited similar issues that are faced by the agent-
oriented approach. This paradigm may be useful in a specific corporate environ-
ment where the predefined protocol and languages have been set up as in the
agent-oriented approach. The two approaches that have just been discussed tend
to be closed systems rather than sustainable ones that could adapt to future
publicly-advertised standards.

The alternative solution – which is the third approach to the merger of agent
and P2P technologies – operates at the following three tiers: 1) an agent system
running on the peer to provide application-related services, 2) a P2P platform
to handle communication and the necessary message routing strategy, and 3) a
middle tier that handles the communication between the agent and P2P layers.
Each tier focuses exclusively on its assigned tasks. For example, when a new P2P
routing strategy is invented, only the P2P layer needs to be updated. Similarly,
to accommodate large numbers of participants, only the middle tier needs to
be scaled by employing industry agreed protocols and languages. Such an ap-
proach would help to develop a fully open and truly scalable distributed data
sharing system that supports dynamic networking and heterogeneity in the data
environment.

Figure 2(a) depicts the three-tier system. Middleware platform provides
general-purpose agent’s behavioral functions, such as sending and receiving mes-
sages, repository for data storing and retrieving. It also offers negotiation and
coordination management among peers. These functions are commonly needed
for any kind of agent systems and regardless of the applications domains. Do-
main specific behaviors, on the other hand, are provided by the specific agent
systems. In general, middle layer is a generic agent platform which provides com-
mon skeletons and basic agents functionalities. The purpose is to allow agents
from different systems to cooperate. Agents from different systems can be trans-
formed to a common agent that operates in middleware layer and vice versa.

Information Acquisition Through an Integrated Paradigm 5

(a) Three-tier System. (b) Without Middle-
ware.

(c) With Middleware.

Fig. 2. Variant of Three-tier System.

Since the middleware platform itself is an agent platform (with limited agent
capabilities), there are two possible variances of the three-tier system: without
middleware platform (Figure 2(b)) and with middleware platform (but with-
out any specific agent systems) (Figure 2(c)). A three-tier system without the
middleware platform is more functionalities-rich but it is a platform dependency
approach, since each of the agents may be created based on APIs provided by dif-
ferent platform vendors. The different interaction protocol of each vendor makes
coordination among peers from different agent systems difficult. In contrast, a
system with only middleware platform has limited functionalities, but facilitates
easy interaction.

3 The BestPeer Approach

As mentioned earlier, agent systems designers could have benefited from connec-
tions with P2P disciplines. A good evaluation of work on combining P2P and
agent paradigms can be found in [10]. In this section, we shall discuss a working
prototype of integrated agent-P2P system developed for serving as a platform on
which P2P applications can be developed easily and efficiently based on agent
technologies.

The BestPeer [1,11] project was initiated in the year 2000 at the National
University of Singapore to study how P2P technologies can be employed for dis-
tributed applications, such as collaborative caching, information retrieval, dis-
tributed data management, etc. It is a three-tier architecture with an agent
layer at the top of the hierarchy, middleware layer that resides in between the
underlying P2P layer on the one hand and the agent layer on the other. The P2P
layer is the lowest layer of the hierarchy for supporting low-level communication,
resource sharing capabilities amongst nodes and self-network reconfiguration.

In BestPeer, the P2P technology provides resource sharing capabilities
amongst nodes, while mobile agents technology further extends the functionali-
ties. In particular, since agents can carry both code and data, they can effectively
perform any kind of functions. With mobile agents, BestPeer not only provides
files and raw data, but processed and meaningful information. For example, in

6 B.C. Ooi et al.

BestPeer, an agent can be sent to a peer with the data file to “digest” its con-
tent and to generate reports for the requester. In another word, in contrast to
existing P2P systems, i.e., Gnutella, Napster, that provide only file level sharing
(i.e., sharing of the entirety of a file), BestPeer supports for content-based search
with the help of agent technologies.

In BestPeer, we have implemented our own Java-based agent system instead
of using existing systems (e.g., [9]). Like existing systems, both the agent and
its class have to be present for the agent to resume execution at the destination
engine. Thus, if the class is not already at the destination node, the class has to
be transmitted also. For the moment, we have adopted a purely “code-shipping”
strategy where a node will always perform its operation at the destination node
(where the data reside). This is a reasonable approach as it exploits parallelism
by enabling all peers to operate on their data simultaneously; otherwise, the
node will become a bottleneck.

More importantly, the use of agents allows BestPeer nodes to collect infor-
mation (e.g., what files/content are sharable, statistics, etc.) on the BestPeer
network, and this can be done offline. This allows a node to be better equipped
to determine who should be its directly connected peers or who can provide it
better service.

BestPeer is self-configurable (P2P layer), i.e., a node can dynamically op-
timize the set of peers that it can communicate directly with based on some
optimization criterion. By keeping peers that provide most information or ser-
vices in close proximity (i.e, direct communication), the network bandwidth can
be better utilized and system performance can be optimized.

(a) Before reconfiguration. (b) After reconfiguration.

Fig. 3. Example on BestPeer’s Reconfigurable Feature.

Figure 3 illustrates an example of BestPeer’s reconfigurable feature. In Fig-
ure 3(a), Peer X is the base node that initiates a request. Here, Peer X initially
has two directly connected peers - Peers A and B. However, only Peer C and
Peer E contain objects that match Peer X’s current query. Peer X can then
obtain the results from Peer E and Peer C directly. At the same time, Peer X
determines that Peer C and Peer E are not its direct peers and they benefit it

Information Acquisition Through an Integrated Paradigm 7

most. As such, Peer X will keep these two peers as its directly connected peers
(assuming Peer X can keep at least 4 directly connected peers), resulting in the
new network layout shown in Figure 3(b).

Our approach is to keep promising peers as close as possible with no (or little)
information exchange between peers. This is to keep the nodes as autonomous as
possible. Moreover, since nodes can redefine the number of direct peers it would
like to have and implement their own reconfiguration strategies, any tight form
of “collaboration” will be complicated to realize and maintain. In BestPeer, three
default reconfiguration strategies have been designed and deployed (see [12] for
the details).

4 Knowledge Acquisition in BestPeer

The initial research activities in P2P systems have been focused on designing
resource discovery mechanisms. However, recent trends are focusing on research
on semantics issues for integrating heterogeneous data sources. For example,
K. Aberer et al. [18] focus on semantic interoperability in a P2P network with
a gossiping technique. Other works, such as Semantic Web [19] and P2P data
management systems [15,8,5] have also been proposed. In this section, we shall
present the PeerDB which is a full-fledged data management system that sup-
ports fine-grain content-based searching. PeerDB [13] employs Information Re-
trieval (IR) techniques to allow peers to share data without relying on a global
shared schema.

4.1 Scenario Overview

To motivate the importance of heterogeneity data sources management, we
present the following scenario. In a hospital, each specialist has a group of pa-
tients that are solely under his care. While some patient data are stored in a
centralized server of the hospital (e.g., name, address, etc), other data (e.g., X-
rays, prescription, allergy to drugs, history, reaction to drugs, etc) are typically
managed by the specialist on his personal PC. For most of these patients, the
specialist is willing to share their data, but there are always some cases where he
is unwilling to share for different reasons (e.g., part of his research program on a
new drug, etc). By making the sharable patient data available to other special-
ists, it allows them to look for other patients who may have similar symptoms
as their own patients, and hence can help them in making better decisions on
the treatment (e.g., drugs to prescribe, reactions to look out for, etc).

In a typical P2P data sharing environment: (1) any specialist can join/leave
the network; (2) the answers need not be complete (i.e., missing data from some
specialists is not critical), (3) nodes have to search for content from geograph-
ically distributed and autonomous information sources. (4) the schema defined
by each specialist may be different.

8 B.C. Ooi et al.

4.2 Architecture of a PeerDB Node

Arising from the mentioned scenario of the issues of P2P data management sys-
tem, we note that to provide automated support for matching the large number
of heterogeneous representation of schemas is one of the most fundamental prob-
lems. Thus, the prime objective of the PeerDB is to provide automated match-
ing strategy that allows user to retrieve relevant information from heterogeneous
data sources without shared global schemas.

Fig. 4. PeerDB node architecture

PeerDB is built on top of BestPeer platform. It is based on agent technolo-
gies to facilitating the acquisition and evaluation of the different schemas on
distributed information sources. Figure 4 illustrates the internals of a PeerDB
node. There are essentially four components that are integrated and implemented
on the middleware layer. The first component is a data management system that
facilitates storage, manipulation and retrieval of the data at the node. We note
that the interface of the data management system is essentially an SQL query
facility. Thus, the system can be used on its own as a stand alone DBMS outside
of PeerDB.

The next two components are related to data sharing management. For each
relation that is created (through the PeerDB interface), the associated meta-
data (schema, keywords, etc) are stored in a Local Dictionary. There is also
an Export Dictionary that reflects the meta-data of relations that are sharable
to other nodes. Thus, only relations that are exported can be accessed by other
nodes in the network. We note that the meta-data associated with the Export
Dictionary is a subset of those found in the Local Dictionary, and the distinction
here is a logical one. The last component is a cache manager. We are dealing
with caching remote meta-data and data in secondary storage, and the cache
manager determines the caching and replacement policies.

In the agent layer, there is a database agent system called DBAgent.
DBAgent provides the environment for mobile agents to operate on. Each

Information Acquisition Through an Integrated Paradigm 9

PeerDB node has a master agent that manages the query of the user. In par-
ticular, it will clone and dispatch worker agents to neighboring nodes, receive
answers and present them to the user.

Finally, we have the routing strategy, network management and messages
management at the P2P layer. These services are provided by BestPeer platform.
It also monitors the statistics and manages the network reconfiguration policies.

4.3 Schema Mapping

In PeerDB, an Information Retrieval (IR) based approach is employed for
schema mapping. For each relation that is created by the user, meta-data are
maintained for each relation name and attributes. These are essentially key-
words/descriptions provided by the users upon creation of the table, and serve
as a kind of synonymous names. DBAgents are sent out to the peers to find out
potential matches and bring the corresponding meta-data back. By matching
keywords from the meta-data of the relations, PeerDB is able to locate relations
that are potentially similar to the query relations.

Peer Names Keywords

P1 Kinases protein, human
SeqID key, identifier, ID
length length

proteinSeq sequence, protein sequence
Protein protein, annexin, zebrafish

P2 SeqNo number, identifier
len length

sequence sequence
ProteinKLen protein, kinases, length

ID number, identifier
P3 seqLength length

ProteinKSeq protein, sequence
ID number, identifier

sequence sequence
Protein protein, kinases, annexin, . . .

P4 name name
char characteristics, features, functions

Fig. 5. Keywords for the relations/attributes names.

We illustrate the strategy with an example. Suppose we have four peers
that share genomic data. Peer P1 defines a relation Kinases(SeqID, length, pro-
teinSeq). Peer P2 defines a relation Protein(SeqNo, len, sequence). Peer P3 de-
fines two relations ProteinKLen(ID, seqLength) and ProteinKSeq(ID, sequence).
Peer P4 defines a relation Protein(name, char). Figure 5 shows the keywords
defined for these relations by the various peers. Suppose the user at peer P1
(he knows his own schema but not the schema of other peers) issues the fol-
lowing SQL query to look for kinases sequences that are longer than 30 base
pairs: SELECT SeqId, proteinSeq FROM Kinases WHERE length > 30. Now,
since one of the keywords for Kinases (relation name) is protein, and protein is
also a keyword for P2’s relation Protein and P3’s relations ProteinKLen and
ProteinKSeq, these relations match the query relation. Similarly, we find that
the attributes SeqID, proteinSeq and length all have matching keywords in P2
and P3. For P3, we note that the query may have to be turned into a join query

10 B.C. Ooi et al.

when evaluated there. For P4, we only have a match in relation name but not in
the attributes. Thus, P4 will be ranked lower than P2 and P3. Semantically, we
note that P2’s data are not actually those that P1 is interested in (since they are
not Kinases data). As such, it is important to have the meta-data and additional
information returned to the users before fetching the data.

4.4 Agent Assisted Query Processing

In PeerDB, we adopt a two-phase agent-assisted query processing strategy. In
the first phase, the relation matching strategy (as described above) is applied
to locate potential relations. These relations (meta-data, database name, and
location) are then returned to the query node for two purposes. One, it allows
user to select the more relevant relations. This is to minimize information over-
load when data may be syntactically the same (having the same keywords) but
semantically different. That is, different schemas are mediated. Moreover, this
can minimize transmitting data that are not useful to the user, and hence better
utilizes the network bandwidth. Two, it allows the node to update its statistics
to facilitate future search process. Phase two begins after the user has selected
the desired relations.

In phase two, the queries will be directed to the nodes containing the selected
relations, and the answers are finally returned (and cached). The two phases are
completely assisted by agents. In fact, it is the agents that are sent out to the
peers, and it is the agent that interacts with the DBMS. Moreover, a query may
be rewritten into another form by the DBAgent (e.g., a query on a single relation
may be rewritten into a join query involving multiple relations).

4.5 Preliminary Results

To evaluate PeerDB’s performance, we conducted several sets of experiments
(see [13] for the details). We summarize our findings here.

– IR based approach is effective, but still limited. We used the standard IR
measures, Precision and Recall, as performance metrics to measure the ap-
proach’s effectiveness on relation matching. Our results show that when the
threshold value is large (resulting in a large number of relations accepted as
matching), Recall is low because of the large number of irrelevant relations
that share common keywords. However, Precision is high showing that most
of the retrieved relations are indeed relevant to the query. This result is con-
sistent with typical IR applications, and demonstrated the effectiveness of
our approach.

– Self-configuration is important. We study two versions of PeerDB: one with
the reconfiguration feature turned off, the other with the reconfiguration fea-
ture turned on. From the experiment, we find that the reconfigurable one is
more superior than the non-reconfigurable one both in initial response time
and in the number of answers returned within a given time, which demon-
strates that self-configuration is important for performance improvement.

Information Acquisition Through an Integrated Paradigm 11

With the ability to reconfigure the network, relevant nodes will move“closer”
and thus queries will always be directed to the more promising node first.

– Caching is helpful for reducing response time. Though many open issues are
involved in P2P caching, we did some controlled experiments to evaluate the
effect of caching on the performance by varying the storage capacity of each
peer. We observe that as the storage capacity of each node increases, the
response time decreases. This is expected as more tuples can be found in
local and neighboring peers. Meanwhile, by caching previous query results,
duplicate work and data movement can be avoided.

5 Conclusion

The objective of this paper is to investigate varieties of P2P facilities that could
benefit agent development. We have addressed several common problems and
discuss broadly different ways in the integration of agent and P2P. Further-
more, we have introduced BestPeer, a prototype system that have integrated
the best of agent and P2P technologies. BestPeer allows data sharing in ad-
hoc P2P systems without strong control over the topology of the network and
the contents of each peer. In addition, BestPeer employs a simple methodology
where every BestPeer node maintains a statistic log of its environment. These
logs are updated each time after some query results are obtained. Based on the
statistics, optimization such as self-reconfiguring the network to achieve better
performance for subsequent queries is applied. Finally, we presented PeerDB, a
peer-based data management system that employs IR techniques to handle data
sharing amongst heterogeneous data sources. Each PeerDB peer is allowed to
define its schemas without any global constraints. Meta-data is used to resolve
the conflict of different semantic objects with different syntactic presentations.

References

1. BestPeer Project Home Page, http://xena1.ddns.comp.nus.edu.sg/p2p/.
2. P. Druschel and A. Rowstron, Pastry: Scalable, Distributed Object Location and

Routing for Large-Scale Peer-to-Peer Systems, IFIP/ACM International Confer-
ence on Distributed systems platforms (Middle ware), 2001, pp. 329–350.

3. T. Finin, R. Fritzson, D. McKay, and R. McEntire, KQML as an Agent Commu-
nication Language, 3rd International Conference on Information and Knowledge
Management (CIKM), 1994, pp. 456–463.

4. Gnutella Development Home Page, http://gnutella.wego.com/.
5. A. Y. Halevy, Z. G. Ives, D. Suciu, and I. Tatarinov, Schema Mediation in

Peer Data Management Systems, International Conference on Data Engineering
(ICDE), 2003.

6. G. Karjoth, D.B. Lange, and M. Oshima, A Security Model for Aglets, IEEE In-
ternet Computing 1 (1997), no. 4.

7. N. Karnik and A. Tripathi, Agent Server Architecture for the Ajanta Mobile-Agent
Systems, International Conference on Parallel and Distributed Processing Tech-
niques and Applications, 1998.

12 B.C. Ooi et al.

8. A. Kementsietsidis, M. Arenas, and R. J. Miller, Mapping Data in Peer-to-Peer
Systems: Semantics and Algorithmic Issues, ACM SIGMOD International Confer-
ence on Management of Data, 2003.

9. D. Lange and M. Oshima, Programming and Deploying Java Mobile Agents with
Aglets, Addison-Wesley, 1998.

10. G. Moro, A. M. Ouksel, and C. Sartori, Agents and Peer-to-Peer Computing: A
Promising Combination of Paradigms, Springer-Verlag (LNAI 2530), 2003, pp. 1–
14.

11. W. S. Ng, B. C. Ooi, and K. L. Tan, BestPeer: A Self-Configurable Peer-to-Peer
System, Poster in International Conference on Data Engineering (ICDE), 2002,
p. 272.

12. W. S. Ng, B. C. Ooi, and K. L. Tan, Bestpeer: A Self-Configurable Peer-to-Peer
System, Technical Report, http://xena1.ddns.comp.nus.edu.sg/p2p/bestpeer.pdf,
2002.

13. W. S. Ng, B. C. Ooi, K. L. Tan, and A. Y. Zhou, PeerDB: A P2P-based System for
Distributed Data Sharing, International Conference on Data Engineering (ICDE),
2003, pp. 633–644.

14. H. S. Nwana, D. T. Ndumu, L. C. Lee, and J. C. Collis, ZEUS: A Toolkit and
Approach for Building Distributed Multi-Agent Systems, International Conference
on Autonomous Agents (Agents) (Seattle, WA, USA), 1999, pp. 360–361.

15. B. C. Ooi, K. L. Tan, A. Y. Zhou, C. H. Goh, Y. G. Li, C. Y. Liau, B. Ling,
W. S. Ng, Y. F. Shu, X. Y. Wang, and M. Zhang, PeerDB: Peering into Per-
sonal Databases, ACM SIGMOD International Conference on Management of Data
(Demo), 2003.

16. S. Ratnasamy, R. Francis, M. Handley, R. Krap, J. Padye, and S. Shenker, A
Scalable Content-Addressable Network, ACM SIGCOMM, 2001.

17. M. Luck, P. McBurney and C. Preist, Agent Technology: Enabling next generation
computing: a roadmap for agent based computing, Agentlink, 2003.

18. K. Aberer, P. Cudré-Mauroux and M. Hauswirth, A Framework for Semantic Gos-
siping, SIGMOD Record, 31(4), 2002.

19. Semantic Web Home Page, www.w3.org/2001/sw/.
20. I. A. Smith and P. R. Cohen, Toward a Semantics for an Agent Communications

Language Based on Speech-Acts, 13th National Conference Artificial Intelligence,
(AAAI Press), 1996.

21. I. Stocia, R. Morris, D. Karger, M. F. Kaashoek, and H. Balakrishnan, Chord: A
Scalable Peer-to-Peer Lookup Service for Internet Applications, ACM SIGCOMM,
2001.

22. R. Vincent, B. Horling, and V. Lesser, An agent infrastructure to build and evalu-
ate multi-agent systems: The java agent framework and multi-agent system simula-
tor, Lecture Notes in Artificial Intelligence: Infrastructure for Agents, Multi-Agent
Systems, and Scalable Multi-Agent Systems., vol. 1887, Wagner & Rana (eds.),
Springer,, January 2001.

23. B. Y. Zhao, J. Kubiatowicz, and A. Joseph, Tapestry: An Infrastructure for Fault-
tolerant Wide-area Location and Routing., Technical report, UCB/CSD-01-1141,
University of California, Berkeley, 2001.

Robustness Challenges in Peer-to-Peer Agent
Systems

Onn Shehory

IBM Research Labs in Haifa
Haifa University, Mount Carmel, Haifa

31905 Israel
onn@il.ibm.com

Abstract. Peer-to-peer systems, and in particular peer agent systems
within organizations and in open electronic markets, have a promise for
improved distribution of information and services and increasing overall
performance and fault-tolerance. Nevertheless, these advantages come at
a price. The complexity of communication, and in time of computation,
increases. Further, failure of weak nodes running agents, which can be
addressed by the peer-to-peer architecture, introduces another overhead.
In addition to complexity issues, peer-to-peer networks, be their members
agents or humans, lack in their ability to enhance trust and security,
and are vulnerable to attacks. These shortcomings of peer-to-peer agent
systems must be addressed to promote the adoption of such systems.
This paper discusses advantages and weaknesses of peer-to-peer agent
systems, and the effect these have on overall system robustness. Some
solution directions are pointed at as well.

1 Introduction

The peer-to-peer (P2P) paradigm introduces a fundamental change in system
architecture. It contrasts two major architectures: the centralized monolithic
system architecture, and the distributed, client-server system architecture. The
most prominent change that this new architecture introduces is the distribution
of control (and responsibility): in P2P systems there is no single point of control,
and the responsibility for system functionality is distributed among its members.
Such a paradigm shift requires an infrastructure to enhance this new type of
interaction among computer systems. Peer-to-peer interaction protocols were
implemented early-on in several multi-agent systems (e.g., RETSINA [1]). Those
early implementations, however, did not provide a generic infrastructure to be
used by others for developing P2P systems. The DARPA CoABS project [2]
advanced the state of the art in multi-agent systems towards a generic P2P
infrastructure. Yet, only the FIPA specification[3] has formally defined generic
agent P2P interaction protocols, and a variety of FIPA implementations (e.g.,
JADE [4], FIPA-OS [5]) support such P2P interaction.

On a parallel track, the immense growth of the web and the use of the MPEG-
1 layer 3 [6] compression algorithm, and the corresponding MP3 audio file format,

G. Moro, C. Sartori, and M.P. Singh (Eds.): AP2PC 2003, LNAI 2872, pp. 13–22, 2004.
c© Springer-Verlag Berlin Heidelberg 2004

14 O. Shehory

have lead to an extensive exchange of music files among users. This file exchange
activity (in many cases violating copyrights) was performed among peers using
file sharing protocols, most prominently Napster. The Napster protocol requires
a server where files can be searched for, yet the files themselves are located at the
clients and are transferred directly between peers. Thus, the exchange is done
in a peer-to-peer manner. A later, serverless, file sharing protocol, is Gnutella
[7], where each peer holds a local directory of peers. Using Gnutella, search is
performed by querying peers and, when the sought files are not found at the
peers’ directories, delegating the query to their peers, iterating the delegation to
some predefined depth. Several other serverless P2P protocols (e.g., Freenet [8],
Morpheus [9]) exist.

Following the P2P file sharing market push, researchers have developed sev-
eral P2P overlays (e.g., CAN [10], Chord [11], Pastry [12]). These provide an
infrastructure for large scale P2P applications, expanding beyond file sharing.
The advantage of these over earlier P2P systems is that they were more carefully
designed and analyzed, to increase efficiency and scalability. Hence, multi-agent
systems, in which interactions are inherently P2P, could benefit from such over-
lays. Several attempts to do exactly this were performed by agent researchers.
Yet in many cases, multi-agent systems differ from classical P2P systems. In
particular, classical P2P systems usually assume that peers are either users or
applications, whereas in multi-agent systems peers are usually autonomous (pos-
sibly intelligent) computational entities. Additionally, in many cases multi-agent
systems require location mechanisms beyond a simple directory service (e.g., bro-
kering, matchmaking [13]). Further, agents may be self-interested, thus selfishly
exploit the P2P system to increase their gains (e.g., use remote cache, but pro-
vide no cache on local host). Selfish behavior is exhibited by humans in P2P
systems as well, however due to their computational capabilities, agents might
be able to excel in selfishness, negatively affecting overall performance of the
system.

These properties of peer-to-peer agent systems may have an effect on the
robustness of such systems, thus on their acceptance as a generic approach to
system design. In this paper we discuss these robustness concerns. We start
by comparing the P2P architecture to other system architectures (Section 2).
We then briefly introduce multi-agent systems, referring to their P2P properties
(Section 3). The advantages of P2P systems are presented in Sections 4.1 and
4.2, and their weaknesses are discussed in Section 4.3. Section 5 concludes the
paper.

2 P2P Versus Client-Server

Both P2P and client-server are distributed system architectures. In a client-
server architecture, multiple clients are connected to a single server, requesting
services from that server. The server is typically a dominant machine on which
shared resources are located and shared applications run. The control over re-
source and service provision is at the server machine. Clients do not directly

Robustness Challenges in Peer-to-Peer Agent Systems 15

Server

Client Client Client Client Client

Fig. 1. Client-server architecture

interact among themselves, nor do they provide services or resources to one an-
other. In a client-server system, clients must know the server, an be able to
communicate with it, in order that the system function. In some client-server
architectures, though not in all, new clients may be added dynamically to the
system. The client-server architecture is depicted in Figure 1.

In a peer-to-peer architecture, each node in the system serves both as a client
and as a server. Thus, no single node assumes control of the system. Rather, each
node requests some resources and services from other nodes, and provides other
nodes with services and resources. A node fully controls its own activity, however
it has no control over remote activity. Typically in P2P architectures, unlike
client-server architectures, the relationship among peers is symmetric,1 i.e., no
peer dominates the interaction. In P2P systems, there is a need for a mechanism
that would allow peers to locate the resources or the services they seek. Such
a mechanism can be provided via a centralized directory server, or by each
peer maintaining a local directory, typically relatively small. Service location
is performed by searching the local directory, then directories of peers, and so
forth up to some search depth. The members of a P2P system do not necessarily
know one another, and membership in the system can change dynamically, each
peer deciding for itself whether (and when) it should join or leave the system.
A peer-to-peer architecture is depicted in Figure 2.

3 Multi-agent Systems

Multi-agent systems are systems in which multiple agents, distributed over a
network, interact. Such interaction can be facilitated both via a client-server
architecture and via a P2P architecture. Yet, for open multi-agent systems in
1 Several recent P2P architectures have introduced super-peers, which are peers that

contribute more resources to the system. Such peers may asymmetrically have more
rights within the P2P system compared to regular peers.

16 O. Shehory

Peer Peer Peer Peer Peer

Peer

Peer Peer

Fig. 2. A typical peer-to-peer architecture

which agents can join an leave at any time, and where member agents are fully
autonomous, a P2P architecture is preferable. Hence, not surprisingly, the com-
munication module of autonomous agents in such open multi-agent systems sup-
ports symmetric communication [14]. That is, an agent in such systems can take
the role of a client, a server, or both. Thus, an agent is a peer in a P2P agent sys-
tem. Unlike P2P systems in which applications interact to request and provide
services, agents are usually assumed to be autonomous, self-interested reason-
ing computational entities. As such, they may misbehave, manipulate, or even
deceive, to reach their goals. Such behaviors can also be found among human
peers in P2P systems. Yet, within a networked, computerized system, agents
may have an advantage over humans in computational power and speed. Thus,
multi-agent systems (which are inherently P2P systems) may intensify problems
which already arise in other P2P systems.

4 P2P Advantages and Disadvantages

Comparing P2P systems to client server systems, and further to a fully-
centralized monolithic system (e.g., a mainframe), we can identify several prop-
erties in which P2P system are clearly better than the others. Distribution is an
example of such a property. Such properties are discussed in Section 4.1. With
respect to several other properties, it is believed that P2P can be better than, or
at least as good as, other architectures. Such properties are discussed in Section
4.2. However, P2P is not the ultimate solution, and with respect to some prop-
erties it is clearly inferior. These weaknesses are discussed in Section 4.3. Note
that most of the properties referred to in this section are applicable to both P2P
systems and P2P multi-agent systems.

Robustness Challenges in Peer-to-Peer Agent Systems 17

4.1 Prominent Advantages

P2P architectures are, by design, distributed, and peers are free to join and leave
the system. They further do not require explicit identity disclosure. This results
in the following advantages of P2P systems over others:

– Distribution
P2P systems are highly distributed. This property is manifested in the sys-
tem being serverless: peers do not need a central server to locate remote
peers, resources and services, nor are they controlled externally by a server.
Peers can reside on any machine across a network, each peer having a local,
limited view of the system.

– Emergent Behavior
Monolithic and client-server systems are designed to address a set of specific
problems, given a set of resources and services. In P2P systems, the design
usually refers to the interaction protocols, however not necessarily to the
resources, services and functionality available within the system. The open-
ness and the dynamism of P2P systems result in problems arriving at the
system being resolved in an emergent, ad-hoc manner. That is, resources
and services required for solving the problem are searched for among peers,
and once located they are used for the solution. In that sense, the system
exhibits emergent behavior. Since new nodes that arrive at the system may
add new resources and services, its actual capabilities may be beyond those
planned for initially.

– Scalability
Requiring no central point for interaction and control, P2P systems appear
highly scalable. One should recall, however, that in P2P systems, locating
resources and services comes at a cost, and this cost increases with the size
of the system. Although in the worst case the increase in location costs
will be linear in the size of the system, the average cost is logarithmic [15],
and is quasi-constant for practical cases. Client-server systems scale up well
too, however scaling is confined by the limited capability of the server (or
several servers) to support the clients at an acceptable quality of service.
Scalability of client server systems comes at the economic cost of increasing
server capabilities.

– Autonomy
A P2P system comprised of software components is loosely coupled, in the
sense that each peer provides resources and performs tasks at its own discre-
tion. This is in particular typical in multi-agent systems, where peer agents
are inherently autonomous entities. Although such autonomy is not always
beneficial for overall system behavior, it is advantageous for addressing the
goals of the peer agents and the users on behalf which these agents might
be acting. Such a property is not provided by client-server systems, let alone
monolithic systems.

– Economic Efficiency
The economic advantages of P2P systems are threefold. Firstly, the cost

18 O. Shehory

of ownership incurred by each pear is low. Each peer can use multiple re-
sources and services, however it needs to own only a small subset thereof.
Secondly, the system scales at virtually no cost. In contrast, client-server and
monolithic systems require costly investments in hardware and software for
scaling them up. Thirdly, in open, market-like environments, where services
and resources are traded, rational behavior among peer agents should result
(given a sufficiently large market), in an efficient market. That is, the market
should arrive at an efficient allocation of resources among the agents. Hence,
for such environments the P2P approach is economically advantageous.

4.2 Probable Advantages

In addition to the above properties, which are, at least under some condition,
prominent advantages of P2P systems over other systems, there are several prop-
erties of P2P systems that seem advantageous, but are not always so. These are
listed below.

– Self-Organization
Self-organization and dynamic adaptation of systems introduces a combina-
torial coordination problem. Self-organization has been studied extensively
for monolithic as well as client-server systems. Implementations of such sys-
tem behavior succeeds in some cases however exhibits less success in others.
Self-organization in P2P systems, and in particular of multi-agent systems,
was studied to some extent, however there is no clear evidence that self-
organization in P2P systems arrives at better (or worse) results compared to
other systems. Although adaptation could be beneficial, its computational
cost may prove too high. This cost may increase in unstructured, P2P sys-
tems, as locating, selecting, and re-organizing peers is costly in such systems.

– Protocol Simplicity
Peer-to-peer protocols are usually very simple. However, client-server proto-
col are not complex either. Monolithic system do not require an interaction
protocol whatsoever. Hence, compared to other architectures, the advantage
of simple protocols is limited. Further, P2P protocols that properly address
security issues introduce an additional complexity.

– Fault-Tolerance
It is widely agreed that redundancy increases fault-tolerance. Since in P2P
systems multiple nodes may be providing similar resources and services, and
since the systems is highly distributed, failure of a single node, or a single
communication line, should have little effect on overall system behavior.
Client-server systems which are distributed too can fail when the central
server fails. In contrast, there is no central server in P2P systems, thus such a
failure will not occur. Yet, monolithic systems as well as client server systems
(to a lesser extent) are engineered and optimized to minimize failures. Some
of these systems are embedded with redundant components for high system
availability. Therefore, the advantage of P2P systems in fault-tolerance is
limited, and is applicable mainly to large-scale, aggregate systems.

Robustness Challenges in Peer-to-Peer Agent Systems 19

– Performance
P2P systems may have access to large quantities of resources and services.
They should hence be able to perform diverse and complex computational
tasks. P2P systems can also distribute tasks among multiple nodes, thus
increasing timely performance of tasks. Yet, monolithic and client-server
systems, unlike P2P systems, are usually optimized for their tasks and for
using their resources. The sub-optimal computation within P2P systems may
thus prove inferior to other systems’ computation. Additionally, P2P systems
run on top of network infrastructure and topology which may be shared by
other systems and poorly designed and configured. Thus, P2P systems are
vulnerable to severe network latencies.

– Anonymity
P2P protocols usually do not require that peers disclose their identity (they
do require some internal ID, though). Hence, peers can gain access to re-
sources and be serviced yet keep their anonymity. Anonymity is out of scope
in monolithic systems, and in client-server systems anonymity is not as-
sumed. However, in the latter systems, users can run anonymizers on clients,
thus gaining anonymity. In both P2P and client-server systems, running snif-
fers on network nodes can reveal identities for which anonymity was initially
sought. Hence, Anonymity is not unique to, and can be violated in, P2P
systems.

4.3 Weaknesses

Thus far we have presented advantages, or at least probable advantages, of P2P
systems. It is important to note that P2P systems have several weaknesses as
well. The distribution of peers and the type of interaction among them expose
P2P systems to several risks. These are detailed below.

– Usage patterns: In similarity to web usage patterns [16], resources and
services within a P2P network are prone to the ”Tragedy of the Commons”
[17] as well. That is, free access to resources may result in their extensive
usage by some peers, which will in turn over-congest the nodes providing the
resources and eventually deem them unreachable to all peers. Several studies
have shown that this phenomenon is exhibited in file sharing P2P systems.
Another usage pattern is the unequal contribution of peers to the system.
That is, some nodes contribute very little, if any, resources, whereas other
contribute a lot. This difference in contribution levels may result from fun-
damental differences between the nodes on which the peers run (e.g., a weak
desktop machine vs. a high-end server machine), however it may also result
from selfish behavior of a peer. A partial remedy to the latter problem is
afforded by the introduction of super-peers into the P2P system. These are
already in use in some P2P systems however are not common in multi-agent
systems.

– Security: Peer-to-peer systems, distributed over an open network, are vul-
nerable to multiple security problems typical in such networks. These include:

20 O. Shehory

lack of confidentiality; no authentication and access control mechanism; no
guaranties on data and service integrity; exposure to denial-of-service at-
tacks; and others. In market-based P2P and agent systems, impersonating
others and repudiating transactions are expected as well. Many of the above
problems can be solved using cryptographic techniques. Using such tech-
niques, researchers have introduced both agent security and P2P security
solutions [18,19,20]. Yet, these solutions complicate the interaction protocol
and impose computation and communication overheads, thus reflecting on
system performance.

– Privacy and trust: Privacy and trust, although in times referred to as
security issues, are different aspects of peer and agent interaction. Privacy
refers to the confidentiality of information disclosed to other parties after
this information was disclosed to those. To date, no mechanism provides
for a peer to guarantee that such information is kept confidential. The P3P
protocol [21] only suggests ways to express privacy policies and preferences,
but it does not provide means for enforcing these policies. Thus, a peer
that seeks privacy relies on its trust in another peer for keeping its private
information confidential.
There are multiple definitions for trust, yet the major result of trust is the
willingness of and agent or a peer to delegate responsibility (e.g., for task
execution) to others. Security mechanisms can increase trust, for instance,
because they can prevent impersonation. However, they cannot guarantee
that a trusted peer will prove trustworthy as expected. Reputation mecha-
nisms (e.g., [22]) can increase trust too, but they do not provide guarantees
as well.
Peer-to-peer systems are usually based on some level of trust among the
peers. Among humans, likely due to societal codes, the majority of peers
appear trustworthy, at least within the scope of the P2P system. For multi-
agent systems, however, such trust is not guaranteed, and mechanisms should
be devised to enhance trust to an acceptable level.

– Quality of service: In P2P systems, the openness and the anonymity of
the system result in peers offering services at diverse levels of quality. Thus,
even when one peer trusts another one to provide a resource or a service, in
current P2P protocols there are no explicit mean to specify the requested
quality. Further, even if the request states the requested quality, there are
no means to guarantee that such a quality will be provided. This deems P2P
systems, to some extent, unreliable.

– Manipulative and malicious behavior: Unreliability is may result from
peers proactively acting in a manipulative or malicious behavior. Such phe-
nomena intensify in market-based agent systems, where self-interested agent
attempt to maximize their gains. A simple example for such a behavior is
a case where an agent has requested a service from another agent and paid
for it; following, the payee has performed the service, however to reduce its
costs the payee has performed the service at a very low quality. This case
may be extended to a case where the payee reports that it has performed
the task allocated to it, although it may have never actually performed it.

Robustness Challenges in Peer-to-Peer Agent Systems 21

There is a vast array of possible manipulative behaviors, of which many can
be addressed by designing preventive mechanisms using methods from game
theory. Nevertheless, the cost of implementing such mechanisms may be very
high, it times prohibitive to practical system implementation.

The above are prominent weaknesses of P2P systems, and within multi-agent
systems some do intensify. Additional weaknesses exist, some of which were
referred to in Section 4.2, when assessing probable advantages.

5 Conclusion

As we show, P2P systems, including P2P agent systems, introduce an array of
advantages which are not provided by other system architectures. However, the
weaknesses of P2P systems, of which some are intensified in multi-agent systems,
cannot be ignored. These weaknesses suggest that P2P agent systems may sig-
nificantly luck in their robustness when compared to other, less distributed and
more structured, systems.

P2P systems are vulnerable to multiple attacks of which only some have solu-
tions known in the art. They rely on trust and privacy, and these are only partly
enhanced by technological solutions. They are further exposed to manipulative
behavior, for which solutions may be too complex. And, at the computational
level, they introduce both communication and computation overheads in terms
of location protocols, caching requirements and security mechanisms.

Thus, although P2P systems, and even more so multi-agent systems, present
a shift of paradigm in system architecture, and although several advantages of
P2P systems place them by far ahead of competing systems, their success as a
generic solution for system design depends, to a large extent, on the success of
the P2P and Agents research communities to overcomes P2P weaknesses and
increase its robustness.

References

1. Sycara, K., Paolucci, M., van Velsen, M., Giampapa, J. The RETSINA MAS
infrastructure. Autonomous Agents and MAS 6 (2003)

2. CoABS: http://coabs.globalinfotek.com/
3. FIPA: http://www.fipa.org/repository/index.html
4. JADE: http://sharon.cselt.it/projects/jade/
5. FIPA-OS: http://www.emorphia.com/research/about.htm
6. MP3: http://www.iis.fraunhofer.de/amm/techinf/layer3/
7. Gnutella: http://www.gnutella.com
8. Freenet: http://freenet.sourceforge.net/
9. Morpheus: http://www.morpheus.com/

10. Ratnasamy, S., Francis, P., Handley, M., Karp, R., Shenker, S. A scalable content-
addressable network. In Proceedings of ACM SIGCOMM’01. (2001) 161–172

11. Stoica, I., Morris, R., Karger, D., Kaashoek, F., Balakrishnan, H. Chord: A scal-
able peer-to-peer lookup service for internet applications. In Proceedings of ACM
SIGCOMM’01. (2001) 149–160

22 O. Shehory

12. Rowstron, A., Druschel, P. Pastry: Scalable, distributed object location and routing
for large-scale peer-to-peer systems. In Proceedings of IFIP/ACM International
Conference on Distributed Systems Platforms. (2001) 329–350

13. Klusch, M., Sycara, K. 8: Brokering and Matchmaking for Coordination of Agent
Societies: A Survey. In Coordination of Internet Agents. Springer (2001) 197–224

14. Shehory, O., Sycara, K. The RETSINA communicator. In Proceedings of Au-
tonomous Agents. (2000) 199–200

15. Shehory, O. A scalable agent location mechanism. Intelligent Agents VI LNAI
1757 (2000) 162–172

16. Huberman, B. The Laws of the Web. MIT Press (2001)
17. Hardin, G. The tragedy of the commons. Science 162 (1968) 1243–1248
18. Wong, H.C., Sycara, K. Adding security and trust to multi-agent systems. Applied

Artificial Intelligence 14 (2000) 927–941
19. Mass, Y., Shehory, O. Distributed trust in open multi-agent systems. In Proceed-

ings of AA’00 workshop on Trust, Fraud and Deception. (2000)
20. Castro, M., Druschel, P., Ganesh, A., Rowstron, A., Wallach, D.S. Security for

structured peer-to-peer overlay networks. In Proceedings of OSDI’02. (2002)
21. P3P: http://www.w3.org/p3p/
22. Yu, B., Singh, M.P. Small-world reputation management in online communities.

CIA2000 LNAI 1860 (2000) 154–165

Bayesian Network Trust Model in Peer-to-Peer
Networks

Yao Wang and Julita Vassileva

Computer Science Department, University of Saskatchewan at 1C101 Eng. Bldg.,
57 Campus DR., Saskatoon, SK S7N 5A9,Canada

{yaw181, jiv}@cs.usask.ca

Abstract. In this paper, we propose a Bayesian network-based trust
model in peer-to-peer networks. Since trust is multi-faceted, even in the
same context, peers still need to develop differentiated trust in different
aspects of other peers’ behaviors. The peer’s needs are different in differ-
ent situations. Depending on the situation, a peer may need to consider
its trust in a specific aspect of another peer’s capability or in a combi-
nation of multiple aspects. Bayesian networks provide a flexible method
to represent differentiated trust and combine different aspects of trust.

1 Introduction

In heterogenous open P2P systems, some peers might be buggy and some might
be malicious and provide bad services. Since there is no centralized node to
serve as an authority to supervise peers’ behaviors and punish peers that be-
have badly, malicious peers have an incentive to harm other peers to get more
benefit because they can get away with their bad behaviors. Mechanisms for
trust and reputation can be used to help peers distinguish potential benevolent
partners from potential malicious partners and thus provide protection for both
consumers and providers of services.

Trust and reputation mechanisms have been proposed for large open envi-
ronments in e-commerce, distributed computing, recommender systems. Agents
are often used to manage and reason about trust and reputation on the behalf
of users. In this situation, trust is defined as an agent’s belief in attributes such
as reliability, honesty and competence of the trusted agent. The reputation of an
agent defines an expectation about its behavior, which is based on other agents’
observations or information about the agent’s past behavior within a specific
context at a given time. They are used to help agents make decisions on whether
a potential partner is trustworthy to interact with. Here the interaction refers
to the activity occurring when an agent gets service from another agent.

Some of the literature on trust and reputation treats the two concepts inter-
changeably or ambiguously. The two concepts are related, but different. Agent
A’s trust in agent B is the accumulation of evaluations that agent A has of its
past interactions with B. It reflects agent A’s subjective viewpoint of B’s capa-
bility. The reputation of agent B, from agent A’s perspective, is the collective

G. Moro, C. Sartori, and M.P. Singh (Eds.): AP2PC 2003, LNAI 2872, pp. 23–34, 2004.
c© Springer-Verlag Berlin Heidelberg 2004

24 Y. Wang and J. Vassileva

evaluation based on other agents’ evaluations of B. It is an objective measure
for agent B’s capability, resulting from the evaluations of many other agents.

2 Bayesian Network-Based Trust Model

We will use a peer-to-peer file sharing application as an example to describe our
approach, however this approach is general and can be applied to other domains,
like web-services, e-commence, recommender systems or peer-to-peer distributed
computing. In peer-to-peer file sharing applications, this approach can also be
integrated with current file sharing protocols, such as Gnutella.

In file sharing systems in peer-to-peer networks, each peer plays two roles,
the role of file provider offering files to other peers and the role of user using
files provided by other peers. In order to distinguish the two roles of each peer,
in the rest of the paper, when a peer acts as a file provider, we call it file
provider; otherwise, we call it simply agent. An agent builds two kinds of trust.
One is the trust in file providers’ competence in providing services. The other
is the trust in another agent’s reliability in providing recommendations about
file providers. Here the reliability includes two aspects: whether the agent is
truthful in telling its information and whether the agent is trustworthy or not.
Since agents are heterogeneous, they judge other agent’s behavior by different
criteria. If their criteria are similar, one agent can trust another agent. If their
criteria are different, they cannot trust each other even if both of them tell the
truth. We assume all the agents are truthful in telling their evaluations. So we
only take care of the situation where agents have different ways of judging issues,
which reflects different user types.

2.1 Trust in a File Provider’s Competence in Providing Files

In a peer-to-peer network, file providers’ capabilities are not uniform. For ex-
ample, some file providers may be connecting through a high-speed network, so
they are able to send files to other agents at a fast speed. Some file providers
might like music, so they share a lot of music files. Some may be interested in
movies and share some movies. Some may be very picky in file quality, so they
only keep and share files with high quality. Therefore, the file provider’s capabil-
ity can be presented in various aspects, such as the download speed, file quality
and file type (see Figure 1). The agent’s needs are also different in different sit-
uations. Sometimes, it might want to know the file provider’s overall capability.
Sometimes it might only be interested in the file provider’s capability in some
particular aspect. For instance, an agent wants to download a music file from a
file provider. At this time, knowing the file provider’s capability in providing mu-
sic files is more valuable for the agent than knowing the file provider’s capability
in other aspects. Agents also need to develop differentiated trust in file providers’
capabilities. For example, the agent who wants to download a music file from the
file provider cares about whether the file provider is able to provide the music file
with good quality at a fast speed, which involves the file provider’s capabilities

Bayesian Network Trust Model in Peer-to-Peer Networks 25

in two aspects, quality and speed. How does the agent combine its two trust
representations, the trust in the file provider’s capability in providing music files
with good quality and the trust in the file provider’s capability in providing a
fast download speed, in order to decide if the file provider is trustworthy?

FTFQDS

T

Trust in a FP

Download speed File Quality File Type

Fig. 1. A bayesian network model

A Bayesian network provides a flexible method to solve the problem. A
Bayesian network is a relationship network that uses statistic methods to repre-
sent probability relationships between different elements. Its theoretical founda-
tion is the Bayes rule [1].

p(h|e) =
p(e|h).p(h)

p(e)
(1)

p(h)is the prior probability of hypothesis h; p(e) is the prior probability of evi-
dence e; p(h|e) is the probability of h given e; p(e|h) is the probability of e given
h.

A naive Bayesian network is a simple Bayesian network. It is composed of
a root node and several leaf nodes. We will use a naive Bayesian network to
represent the trust between an agent and a file provider.

Every agent develops a naive Bayesian network for each file provider that it
has interacted with. Each Bayesian network has a root node T, which has two
values, ”satisfying” and ”unsatisfying”, denoted by 1 and 0, respectively. p(T =
1) represents the value of agent’s overall trust in the file provider’s competence
in providing files. It is the percentage of interactions that are satisfying and
measured by the number of satisfying interactions m divided by the total number
of interactions n. p(T = 0) is the percentage of not satisfying interactions.

p(T = 1) =
m

n
, where p(T = 1) + p(T = 0) = 1 (2)

The leaf nodes under the root node represent the file provider’s capability in
different aspects. Each leaf node is associated with a conditional probability
table (CPT). The node, denoted by FT, represents the set of file types. Suppose
it includes five values, ”Music”, ”Movie”, ”Document”, ”Image” and ”Software”.

26 Y. Wang and J. Vassileva

Table 1. The CPT of node FT

T = 1 T = 0
Music p = (FT = ”Music”|T = 1) p = (FT = ”Music”|T = 0)
Movie p = (FT = ”Movie”|T = 1) p = (FT = ”Movie”|T = 0)

Document p = (FT = ”Document”|T = 1) p = (FT = ”Document”|T = 0)
Image p = (FT = ”Image”|T = 1) p = (FT = ”Image”|T = 0)

Software p = (FT = ”Software”|T = 1) p = (FT = ”Software”|T = 0)

Its CPT is showed in Table 1. It includes two columns of values. Each column
follows one constraint, which corresponds to one value of the root node. The
sum of values of each column is equal to 1.

p(FT = ”Music”|T = 1) is the conditional probability with the condition
that an interaction is satisfying. It measures the probability that the file involved
in an interaction is a music file, given the interaction is satisfying. It can be
computed according to the following formula:

p(FT = ”Music”|T = 1) =
p(FT = ”Music”, T = 1)

p(T = 1)
(3)

p(FT = ”Music”, T = 1) is the probability that interactions are satisfying and
files involved are music files.

p(FT = ”Music”, T = 1) =
m1
n

(4)

m1 is the number of satisfying interactions when files involved are music files.
p(FT = ”Music”|T = 0) denotes the probability that files are music files,

given interactions are not satisfying. The probabilities for other file types in
Table 1 are computed in a similar way.

Node DS denotes the set of download speeds. It has three items,”Fast”,
”Medium” and ”Slow”, each of which covers a range of download speed.

Node FQ denotes the set of file qualities. It also has three items, ”High”,
”Medium” and ”Low”. Its CPT is similar to the one in Table 1.

Here we only take three aspects of trust into account. More relevant aspects
can be added in the Bayesian network later to account for user preferences with
respect to service.

Once getting nodes’ CPTs in a Bayesian network, an agent can compute
the probabilities that the corresponding file provider is trustworthy in different
aspects by using Bayes rules, such as p(T = 1|FT = ”Music”) - the probability
that the file provider is trustworthy in providing music files, p(T = 1|FQ =
”High”) - the probability that the file provider is trustworthy in providing files
with high quality, p(T = 1|FT = ”Music”, FQ = ”High”) - the probability
that the file provider is trustworthy in providing music files with high quality.
Agents can set various conditions according to their needs. Each probability
represents trust in an aspect of the file provider’s competence. With the Bayesian
networks, agents can infer trust in the various aspects that they need from the

Bayesian Network Trust Model in Peer-to-Peer Networks 27

corresponding probabilities. That will save agents much effort in building each
trust separately, or developing new trust when conditions change.

2.2 Evaluation of an Interaction

A search request in file sharing peer-to-peer applications usually results in a long
list of providers for an identical file. An agent can arrange the list according to
its trust in these file providers. Then the agent chooses the most trusted file
providers in the top of the list to interact with. Agents update their correspond-
ing Bayesian networks after each interaction. If an interaction is satisfying, m
and n are both increased by 1 in Formula 4. If it is not satisfying, only n is in-
creased by 1. Two main factors are considered when agents judge an interaction,
the degree of their satisfaction with the download speed sds and the degree of
their satisfaction with the quality of downloaded file sfq. The overall degree of
agents’ satisfaction with an interaction is computed as the following:

s = wds ∗ sds + wfq ∗ sfq, where wds + wfq = 1 (5)

wds and wfq denote weights, which indicate the importance of download speed
and the importance of file quality to a particular agent (depending on the user’s
preferences). Each agent has a satisfaction threshold st. If s < st, the interaction
is unsatisfying; otherwise, it is satisfying.

2.3 Handing Other Agents’ Recommendations

If an agent is not sure about the trustworthiness of a file provider, it can ask
other agents to make recommendations for the file provider. The agent can send
various recommendation requests according to its needs. For example, if the
agent is going to download a movie, it may care about the movie’s quality.
Another agent may care about the speed. So the request can be ”Does the file
provider provide good quality movies?”. If the agent cares both about the quality
and the download speed, the request will be something like ”Does the file provider
provide good quality files at a fast download speed? ”. When other agents receive
these requests, they will check their trust-representations, i.e. their Bayesian
networks, to see if they can answer such questions. If an agent has downloaded
movies from the file provider before, it will send recommendation that contains
the value p(T = 1|FT = ”Music”, FQ = ”High”) to answer the first request or
the value p(T = 1|FT = ”Music”, FQ = ”High”, DS = ”Fast”) to answer the
second request. The agent might receive several such recommendations at the
same time, which may come from the trustworthy acquaintances, untrustworthy
acquaintances, or strangers. If the references are untrustworthy, the agent can
discard their recommendations immediately. Then the agent needs to combine
the recommendations from trustworthy references and from unknown references
together to get the total recommendation for the file provider:

rij = wt ∗
∑k

l=1 tril ∗ tlj∑k
l=1 tril

+ ws ∗
∑g

z=1 tzj

g
, where wt + ws = 1 (6)

28 Y. Wang and J. Vassileva

rij is the total recommendation value for the jth file provider that the ith agent
gets. k and g are the number of trustworthy references and the number of un-
known references, respectively. tril is the trust that the ith user has in the lth

trustworthy reference. tlj is the trust that the lth trustworthy reference has in
jth file provider. tzj is the trust that the zth unknown reference has in jth file
provider. wt and ws are the weights to indicate how the user values the impor-
tance of the recommendation from trustworthy references and from unknown
references. Since agents often have different preferences and points of view, the
agent’s trustworthy acquaintances are those agents that share similar prefer-
ences and viewpoints with the agent most of time. The agent should weight the
recommendations from its trustworthy acquaintances higher than those recom-
mendations from strangers. Given a threshold θ, if the total recommendation
value is greater than θ, the agent will interact with the file provider; otherwise,
not.

If the agent interacts with the file provider, it will not only update its trust
in the file provider, i.e. its corresponding Bayesian network, but also update its
trust in the agents that provide recommendations by the following reinforcement
learning formula:

trt+1
ij = α ∗ trt

ij + (1 − α) ∗ eα (7)

trt
ij denotes the trust value that the ith agent has in the jth reference after t

recommendations of the jth reference; α is the learning rate - a real number in
the interval [0,1]. eα is the new evidence value, which can be -1 or 1. If the value
of recommendation is greater than θ and the interaction with the file provider
afterwards is satisfying, eα is equal to 1; in the other case, since there is a
mismatch between the recommendation and the actual experience with the file
provider, the evidence is negative, so eα is -1.

Another way to find if an agent is trustworthy or not in telling the truth is
the comparison between two agents’ Bayesian networks relevant to an identical
file provider. When agents are idle, they can ”gossip” with each other periodi-
cally, exchange and compare their Bayesian networks. This can help them find
other agents who share similar preferences more accurately and faster. After
each comparison, the agents will update their trusts in each other according the
formula:

trt+1
ij = β ∗ trt

ij + (1 − β) ∗ eβ (8)

The result of the comparison eβ is a number in the interval [-1, 1]. β is the
learning rate - a real number in the interval [0,1] which follows the constraint
β > α. This is because the Bayesian network collectively reflects an agent’s
preferences and viewpoints based on all its past interactions with a specific file
provider. Comparing the two agents’ Bayesian networks is tantamount to com-
paring all the past interactions of the two agents. The evidence eα in Formula 7
is only based on one interaction. The evidence eβ should affect the agent’s trust
in another agent more than eα.

Bayesian Network Trust Model in Peer-to-Peer Networks 29

How do the agents compare their Bayesian networks and how is eβ com-
puted? First, we assume all agents have the same structure of Bayesian networks.
We only compare the values in their Bayesian networks. Suppose agent 1 will
compare its Bayesian network (see Figure 1) with the corresponding Bayesian
network of agent 2. Agent 1 obtains the degree of similarity between the two
Bayesian networks by computing the similarity of each pair of nodes (T, DS, FQ
and FT), according to the similarity measure based on Clark’s distance [2], and
then combining the similarity results of each pair of nodes together.

eβ = 1 − 2 ∗
4∑

i=1

(w1i ∗ ci), where w11 + w12 + w13 + w14 = 1 (9)

c1 =

√
(v111 − v211)2

(v111 + v211)2
+

(v112 − v212)2

(v112 + v212)2
(10)

ci =

∑2
j=1

√∑hi

l=1
(v1ijl−v2ijl)2
(v1ijl+v2ijl)2

2
, where i = 2, 3, 4 (11)

w11, w12, w13 and w14 are the weights of the node T, DS, FQ, and FT, re-
spectively, related to agent 1, which indicate the importance of these nodes in
comparing two Bayesian networks. c1, c2, c3 and c4 are the results of comparing
agent 1 and agent 2’s CPTs about node T, DS, FQ and FT. Since the node T
is the root node and it has only one column in its CPT, while other nodes (DS,
FQ, FT) are the leaf nodes and have two columns of values in theirs CPTs, we
compute c1 differently from c2, c3, and c4. hi denotes the number of values in
the corresponding node. h1 = 3; h2 = 3; h3 = 5. v111 and v112 are the values
of p(T = 1) and p(T = 0) related to agent 1. v211 and v212 are the values of
p(T = 1) and p(T = 0) related to agent 2. v1ijl and v2ijl are the values in agent
1’s CPTs and agent 2’s CPTs, respectively.

The idea of this metric is that agents compute not only their trust val-
ues, their CPTs, but also take into account their preferences (encoded as the
weights,w11, w12, w13, w14). So agents with similar preferences, such as the im-
portance of file type, quality, download speed, will weight each other’s opinions
higher.

3 Evaluation

We evaluate our approach in a simulation of a file sharing system in a peer-to-
peer network developed on the JADE 2.5.

3.1 Experimental Setup

For the sake of simplicity, each node in our system plays only one role at a time,
either the role of a file provider or the role of an agent. Every agent only knows
other agents directly connected with it and a few file providers at the beginning.

30 Y. Wang and J. Vassileva

Every agent has an interest vector. The interest vector is composed of five
elements: music, movie, image, document and software. The value of each el-
ement indicates the strength of the agent’s interests in the corresponding file
type. The files the agent wants to download are generated based on its interest
vector. Every agent keeps two lists. One is the agent list that records all the
other agents that the agent has interacted with and its trust values in these
agents. The other is the file provider list that records the known file providers
and the corresponding Bayesian networks representing the agent’s trusts in these
file providers. Each file provider has a capability vector showing its capabilities in
different aspects, i.e. providing files with different types, qualities and download
speeds.

Our experiments involve 10 different file providers and 40 agents. Each agent
will gossip with other agents periodically to exchange their Bayesian networks.
The period is 5, which means after each 5 interactions with other agents, the
agent will gossip once. wds = wfq = 0.5; α = 0.3; β = 0.5; w11 = w12 = w13 =
w14 = 0.25. The total number of interactions is 1000.

3.2 Results

The goal of the first experiment is to see if a Bayesian network-based trust
model helps agents to select file providers that match better their preferences.
Therefore we compare the performance (in terms of a percentage of success-
ful recommendations, which is the number of successful recommendations over
the number of positive recommendations) of a system consisting of agents with
Bayesian network-based trust models and a system consisting of agents without
Bayesian networks (BN) that represent general trust, not differentiated to dif-
ferent aspects. Successful recommendations are those positive recommendations
(obtained based on Formula 6) when agents are satisfied with interactions with
recommended file providers. If an agent gets a negative recommendation for a file
provider, it will not interact with the file provider. We have two configurations
in this experiment:
•Trust and reputation system with BN (TRBN): the system consists of agents
with Bayesian networks-based trust models that exchange recommendations
with each other;
•Trust and reputation system without BN (TR): the system consists of agents
that exchange recommendations, but don’t model differentiated trust in file
providers.

Figure 2 presents the means and standard deviations of percentages of suc-
cessful recommendations in the two systems for 10 runs. It shows that the system
using Bayesian networks performs slightly better than the system with general
trust both in means and in standard deviations.

The goal of the second experiment is to see if the exchange of recommenda-
tion values helps agents to achieve better performance (defined as the percentage
of successful interactions with file providers, which is the number of successful
interactions divided by the total number of interactions). This is in fact a mea-
sure of confidence in peers’ forecast, since peers interact with a file provider only

Bayesian Network Trust Model in Peer-to-Peer Networks 31

The number of interactions

Su
cc

es
sf

ul
 r

ec
om

m
en

da
tio

ns
 (

%
)

TRBN mean TR mean

TRBN standard deviation TR standard deviation

Fig. 2. Trust and reputation system with BN vs. without BN

if their trust exceeds a threshold or they get a positive recommendation. For the
reason, we compare four configurations:
•Trust and reputation system with BN;
•Trust and reputation system without BN;
•Trust system with BN: the system consists of agents with Bayesian networks-
based trust models, which don’t exchange recommendations with each other;
•Trust system without BN: the system consists of agents that have no differen-
tiated trust models and don’t exchange recommendations with each other.

Figure 3 shows that the two systems, where agents share information with
each other, outperform the systems, where agents do not share information. The
trust system using Bayesian networks is slightly better than the trust system
without using Bayesian networks. There is an anomaly in the case when agents
do not share recommendations, since in the end of the curve the system without
BN perform better than the system with BN. This could be explained with an
imprecise BN due to insufficient experience.

In some sense, an agent’s Bayesian network can be viewed as the model of a
specified file provider from the agent’s personal perspective. In our experiments,
we use a very simple naive Bayesian network, which can not represent complex
relationships. In the real file-sharing system, the model of file providers might
be more complex and required the use of a more complex Bayesian network. Our
Bayesian network only involves three factors.

4 Discussion and Related Work

How many Bayesian networks can an agent afford to maintain to represent its
trust in other agents in the networks? It depends on the size of the network and
the likelihood that agents have repeated interactions. Resnick [3] empirically
shows that 89.0% of all seller-buyer pairs in eBay conducted just one transac-
tion during a five-month period and 98.9% conducted no more than four. The

32 Y. Wang and J. Vassileva

The number of interactions

Su
cc

es
sf

ul
 in

te
ra

ct
io

ns
(%

)

Trust and reputation system with BN
Trust and reputation system without BN
Trust system with BN
Trust system without BN

Fig. 3. The comparison of four systems

interactions between the same seller and the same buyer are not repeatable. The
buyer’s trust in a seller is only based on one direct interaction. The seller’s rep-
utation is mostly built on the buyers’ having a single experience with the seller.
This situation often happens in a very large network or in large e-commence
sites. Since there are a large number of sellers and buyers, the chance that a
buyer meets the same seller is rare. But if the kind of goods being transacted
is only interesting to a small group of people, for example, collectors of ancient
coins, the interactions about this kind of goods happen almost exclusively in a
small group. So the probability that sellers and buyers have repeated interactions
will be high, and they will be able to build trust in each other by our method.

Our approach is useful in situations where two agents can repeatedly interact
with each other. In a small-size network, there is no doubt that our approach is
applicable. For a large network, our approach is still suitable under the condition
that the small-world phenomenon happens. The small-world phenomenon was
first discovered in the 1960ies by social scientists. Milgram’s experiment showed
that people in the U.S. are connected by a short (average length of 6) chain
of intermediate acquaintances. Other studies have shown that people tend to
interact with other people in their small world more frequently than with people
outside. The phenomenon also happens in peer-to-peer networks. Jovanovic [4]
shows that the small-world phenomenon occurs in Gnutella. It means that agents
are inclined to get files from other agents from a small sub-community. This
small sub-community often consists of agents that have similar preferences and
viewpoints.

Our approach also requires that agents have compatible ontologies, i.e. their
“understanding” of the elements of the Bayesian networks have to be identical
or similar at comparision. Although this is a strong assumption, it is feasible if
peers are designed by the same person or group or they have similar perferences.

Bayesian Network Trust Model in Peer-to-Peer Networks 33

Abdul-Rahman and Hailes [5] capture the most important characteristics of
trust and reputation and propose the general structure for developing trust and
reputation in a distributed system. Most of the later works in the area follow
their ideas, but in different application domain, such as [6], [7], [2], Sabater and
Sierra’s work [8] extends the notion of trust and reputation into social and on-
tological dimensions. Social dimension means that the reputation of the group
that an individual belongs to also influences the reputation of the individual.
Ontological dimension means that the reputation of an agent is compositional.
The overall reputation is obtained as a result of the combination of the agent’s
reputation in each aspect. Our approach integrates these two previous works [5],
[8], and applies them to file sharing system in peer-to-peer networks. Another dif-
ference between our work and Sabater and Sierra’s work is that we use Bayesian
networks to represent the differentiated trust at different aspects, other than the
structure of ontology. Another difference is that we don’t treat the differentiated
trusts as compositional. Usually the relationship between different aspects of
an agent is not just compositional, but complex and correlative. Our approach
provides an easy way to present a complex and correlative relationship. Our
approach is also flexible in inferring the trust of an agent for different needs.
For example, sometimes we care about the overall trust. Sometimes we only
need to know the trust in some specific aspect. This bears parallel with work on
distributed user modeling and purpose-based user modeling [9], [10].

Yu and Singh [11], [12] focus on how to use social networks to gather in-
formation to compute agents’ reputation. They do not deal with differentiated
trust and reputation. Cornelli’s work [7] is on the area of file sharing in peer-
to-peer networks. However, it concentrates on how to prevent the attacks to the
reputation system and does not discuss how agents model and compute trust
and reputation.

5 Conclusions

In this paper, we propose a Bayesian network-based trust model. Bayesian net-
works provide a flexible method to represent differentiated trust in different
aspects of each other’s capability and combine different aspects of trust. We
evaluated our approach in a simulation of a file sharing system in a peer-to-
peer network. Our experiments show that the system where agents communicate
their experiences (recommendations) outperforms the system where agents do
not communicate with each other, and that a differentiated trust adds to the
performance.

Future work includes adding more aspects in the Bayesian networks, trying
to find the key parameters that influence the system performance, and testing
the system under other performance measures, for example, how fast an agent
can locate a trustworthy service provider. Applying this approach to peer-to-peer
systems for computational services is particular promising.

34 Y. Wang and J. Vassileva

References

1. Heckerman, D.: A tutorial on learning with bayesian networks. Technical report,
Microsoft (1995)

2. Montaner, M., López, B., de la Rosa, J.L.: Opinion-based filtering through trust.
In: Cooperative Information Agents VI — Proceedings of the 6th International
Workshop, CIA 2002. (2002) 164–178

3. Resnick, P., Zeckhauser, R.: Trust among strangers in internet transactions: Em-
pirical analysis of ebay’s reputation system. (In: NBER Workshop on Empirical
Studies of Electronic Commerce)

4. Jovanovic, M.A.: Modeling large-scale peer-to-peer networks and a case study of
gnutella. Master’s thesis, University of Cinicnnati (2001)

5. Abdul-Rahman, A., Hailes, S.: Supporting trust in virtual communities. In: Pro-
ceedings of the Hawai’i International Conference on System Sciences, Maui, Hawaii
(2000)

6. Azzedin, F., Maheswaran, M.: Evolving and managing trust in grid computing
systems. In: IEEE Canadian Conference on Electrical & Computer Engineering.
(2002)

7. Cornelli, F., Damiani, E., di Vimercati, S.D.C., Paraboschi, S., Samarati, P.: Imple-
menting a reputation-aware gnutella servent. Lecture Notes in Computer Science
2376 (2002) 321

8. Sabater, J., Sierra, C.: Regret: a reputation model for gregarious societies. (In:
4thWorkshop on Deception, Fraud and Trust in Agent Societies)

9. Niu, X., McCalla, G., Vassileva, J.: Purpose-based user modelling in a multi-agent
portfolio management system. In: Proceedings of User Modeling UM03, Johnstown,
PA (2003)

10. Vassileva, J., McCalla, G., Greer, J.: Multi-agent multi-user modeling. User Mod-
eling and User-Adapted Interaction (2003)

11. Yu, B., Singh, M.P.: A social mechanism of reputation management in electronic
communities. In: Proceedings of Fourth International Workshop on Cooperative
Information Agents. (2000) 154–165 36% acceptance rate.

12. Yu, B., Singh, M.P.: Searching social networks. In: Proceedings of the Second
International Joint Conference on Autonomous Agents and Multiagent Systems
(AAMAS’03), (ACM Press) 65–72

Agent-Based Social Assessment of Shared Resources�

Matthias Nickles and Gerhard Weiß

Department of Computer Science, Technical University of Munich
D-85748 Garching bei München, Germany, {nickles,weissg}@cs.tum.edu

Abstract. Prior to the access to decentralized resources like web services and
shared files in peer-to-peer networks, the user needs to be provided with accurate
information about these resources. While some of them can be specified impar-
tially, other descriptions might be biased by individual preferences or subjective
utility, for example quality ratings or content synopsizes. Unfortunately, such
assessments of distributed resources usually either solely reflect the requirements,
opinion and preferences of the resource providers or single users, or they consist
of plain, often overgeneralized ratings obtained from voting-based recommender
systems. In contrast to these approaches, we propose an agent-based framework
for the distributed assignment and social weighting of rich, multidimensional
and possibly inconsistent resource descriptions obtained from the conflicting
opinions of communicating agents, which compete in the assertion of individual
resource assessments.

Keywords: Open Systems, Peer-to-Peer Computing, Semantic Web, Multidimen-
sional Rating, Collaborative Filtering.

1 Introduction

In the context of resource sharing in large, open and heterogenous peer-to-peer networks
like Gnutella, eDonkey or KaZaA, and public internet resources like web sites and web
services, a well-known problem is constituted through the notorious lack of reliable,
impartial descriptions (especially ratings) of such resources. If a resource description
(RD) is available, in most cases the description is provided by the original resource
provider, which makes it in general as useless as any other kind of advertisement. In
contrast, recommendation systems [1] based on the evaluation of access statistics, vot-
ing or resource content analysis try to ascertain the “objective” value of resources. E.g.,
collaborative filtering recommendation systems provide filtering criteria for site clas-
sification, which classify the rated object in terms of “appropriate/inappropriate” or
“interesting/uninteresting”, based on the assumed interests of a more or less homoge-
nous group of users with a common profile, or on implicitly majority voting algorithms
like Google’s PageRank [2]. As a supplement or as a competing approach, content-based
filtering recommendation systems try to analyze the content of documents (usually by
means of keyword counting) and compare these results with the interest profiles of the
potential users [3]. The main drawback of such filtering systems is their limitation to
� This work is supported by DFG (German National Science Foundation) under contracts

no. Br609/11-2 and MA759/4-2.

G. Moro, C. Sartori, and M.P. Singh (Eds.): AP2PC 2003, LNAI 2872, pp. 35–40, 2004.
c© Springer-Verlag Berlin Heidelberg 2004

36 M. Nickles and G. Weiß

one-dimensional descriptions (amounting to “like/dislike”) grounded in the presumed
predilections of predefined or computationally demarcated interest groups. This ap-
proach does not provide much help for the process of interest forming, which should in
fact precede any filtering. Likewise, trust networks like PeopleNet [4] don’t help much
in case there is no trust yet regarding a specific rater, topic or object. Another problem
is the apparent black-box character of many (commercial) recommendation methods,
which on the one hand provides some protection against manipulation, but on the other
hand seriously restricts their trustability. Balanced descriptions (i.e. the weighting of the
opinions of multiple users and groups) which are in addition reliable and unrestricted can
currently only be provided by humans, for example journalists and experts, or through
discussion forums (e.g., newsgroups and threaded message boards like Slashdot [5]).
Another disadvantage of this kind of approach is the absence of a machine readable
encoding of the results, which makes it almost impossible for information agents like
web spiders to analyze such descriptions. Although the Semantic Web effort addresses
the problem of missing machine-understandability of web site descriptions, it currently
focusses primarily on the specification of languages and tools for the syntactical repre-
sentation of semantics and ontologies, not on the process of information gathering and
rating itself, and it is just beginning to take into consideration phenomena like social
RD impact [6], conflicting opinions, information biasing by commercial interests, and
inconsistent or intentionally incorrect information. In contrast to traditional approaches,
our goal is to provide a framework for the emergence of so-called social resource de-
scriptions (social RDs) with the following properties:

Recognition of controversies. A high amount of RDs are subjectively biased quality
judgements with a high conflict potential. Competitive descriptions, represented by
software agents, shall enable such controversies, and social resource descriptions
shall make them explicit and available to information agents.

Pro-active opinion representation. The competitive descriptions which contribute to
social descriptions are no single “passive” statements like votes for an opinion poll,
but shall instead continuously be represented by social agents which support them
actively in a dynamic social process, e.g. by means of argumentation or conflicting
behavior.

Complexity and hybridity. Due to the size, the heterogeneity and the openness of the
world wide web and public peer-to-peer networks, the agent-supported description
of resources is a highly complex task. Socially obtained descriptions increase the
complexity of hybrid information-rich environments because they make human so-
ciality “behind” the technical infrastructure visible. Nevertheless, to overcome the
idea of a web consisting of unrelated (or only syntactically related) information
pieces, the enabling of computational social structures is inalienable in our opinion.

Unveiling of social intentions. Even an individual description does not only assert the
rated resource, but makes an implicit statement about the actor that is responsible
for the description [6].

Agent-Based Social Assessment of Shared Resources 37

2 Architecture

As an approach to the described issues, we outline a multiagent system consisting of the
following components. For lack of space, we cannot go into technical details.

1. Self-interested description agents which are able to deliberatively describe resources
in accordance with the opinions, criteria and interests of their clients, and to represent
their individual descriptions in a discourse with other description agents1. They
act either as representatives for existing RDs (therefore in some sense the pro-
active “incarnations” of RDF documents), or of peer agents, user communities,
source creators (e.g., web sites owners or media providers), or private and public
organizations. Every description agent supports a certain opinion and announces,
asserts and probably defends it in an open discussion forum which is assigned to
the rated resource (usually a web site) or a peer-to-peer client (e.g., a file sharing
application). These forums are public whiteboards, on which the agents put their
messages addressed to other agents and receive responses - very much like people do
in newsgroups and message boards. Every forum has its own description vocabulary
which could be assembled by the agents themselves via some ontology negotiation
technique.

2. A technical instance (Social Resource Description System (SRDS)) for the technical
facilitation of description agents communication and for the derivation of social
RDs from these communication. It is a software component which observes the
forums and continuously derives from the forum communication so-called social
expectation structures [7,8]. These structures are distilled to social RDs. Together
with the rated web page, the descriptions are presented to the user (e.g. to the web
surfer through a special HTML frame within the browser window or via some user
agent), and to information agents, for example the web spiders of internet search
machines like Google or Altavista. The description agents will also obtain these
information, since such knowledge is considered to be important for the agents
to let them intentionally avoid or achieve conflicting or collaborative behavior in
respect to other agents and social norms, and to find appropriate allies and opponents.

3 Social Resource Descriptions

In terms of the RDF standard (the XML-based Resource Description Framework [9],
a successor of the internet rating language PICS [10]), the description of a certain
(web) resource is a finite set of statements (elementary resource descriptions) together
with a description vocabulary. Each statement describes the properties of the respec-
tive resource (which can be virtually any kind of object like web site attributes, doc-
uments or web services, but also other statements) by means of meta data, accord-
ing to a vocabulary of property types or classes (sometimes called an “ontology” or
“schema”). Technically, such an elementary resource description is defined as a propo-
sition of the form (resource, propertyType, value), in which resource denotes an
object with an unique identifier (i.e., a Uniform Resource Identifier (URI) or a locator

1 Voting is considered to be a simple kind of such discourse participation.

38 M. Nickles and G. Weiß

like ed2k : //|file|filename.mp3). propertyType is the described attribute of the re-
source (an element of the given description vocabulary), and value is its assigned value.
Elementary RDs can be expressed through a formal description language, for example
RDF or DAML/OIL [11]. A simple example for a description with boolean property
type is
(www.SomeCompany.com, MinorOrientation, True). value can also be a resource
by itself, and thus the description vocabulary can form a hierarchy of (meta-) property
types (e.g., Author and Trustability in
{www.somesite.com, Author, John), (John, Trustability, high)}.
Social RDs are based on expectations regarding social agent behavior and derived from
graphical expectation networks [7,8]2. They are sets of expectations regarding the antic-
ipated utterance of elementary RDs in a certain discourse context, inductively learned
by the SRDS from the observation of agent communications. Each element of a social
resource description is the expectation of a certain reply to a question regarding the
agreement with an elementary RD, directed to agents (or, in a generalized way, to social
agent roles) which currently participate in the observed forum. The calculation of social
RDs regarding resource properties from expectations regarding communications makes
use of the fact that an elementary RD is equivalent to a set of meta descriptions, i.e.
“descriptions of descriptions” with a common property type “Assent”: From a multi-
dimensional description (resource, propertyType, value) as in RDF we can generate
meta-descriptions in the form of (propertyType = value, Assent, degree of assent),
where the first element of this tuple is the content (logical proposition) of an assertive
speech act, the second element denotes the property type corresponding to the speech act
performative “Assert”3. The omitted resource resource is provided implicitly through
the forum topic. The social amount of agreement or dissent, respectively, can then sim-
ply be measured as the probability that a certain RD agent (or a role subsuming a set of
agents) utters the message “Actor1 � Actor2 :′ Assert(propertyType = value)′”.
E.g., a SRDS query regarding the assessment of the SomeCompany site by a set of
agents A would look like (www.SomeCompany.com, MinorOrientation, ?x) (where
?x is an existentially quantified variable with instances vi), which could be trans-
formed into the speech acts “B � A :′ Query(MinorOrientation =?v)′ or
“B � A :′ Request(Assert(MinorOrientation = vi))′.
The social RD is then simply a set of expectabilities (the expectation strengths, denoted
as probabilities in a range of 0 to 1) of the potential reactions to such a request, together
with attributes for expectation normativity and deviancy4. E.g., the resulting values for
answers asserting
(www.SomeCompany.com, MinorOrientation, True(= v1)) could be
strength = 0.9, normativity = 0.7, deviancy = 0.01

2 Note that trust is a special kind of such social expectation.
3 or what ever performative the respective communication agent language provides to signal

consent.
4 Informally, normativity = long-term stability of social expectations, in a range from 0 to 1,

and deviancy = difference between a highly normative, long-term expectation and the actual
probability of the respective speech act occurrence obtained from short-term observations.
Please see [8,7] for details.

Agent-Based Social Assessment of Shared Resources 39

and strength = 0.1, normativity = 0.7, deviancy = 0.01 for
(www.SomeCompany.com, MinorOrientation, False(= v2))5 (i.e., these agents as-
sert in a quite normative way that SomeCompany is highly minor-oriented).
We denote (unconditioned) social RDs as sets of terms having the form
Actor : (resource, propertyType, (value, expectability, normativity, deviancy)),
where Actor can denote an agent or a social role.
The query results are obtained from the expectation network, either directly if the ex-
pectation network already contains expectations for the respective
Query/Request(...) → Assert/Agree/Deny(...) speech act trajectories, or by means
of an SRDS query on the forum directed to the RD agents. In the latter case, the query
introduces the required expectation network paths, and then the SRDS observes the sub-
sequent agent communications to obtain expectabilities which reflect the agent opinions
along these paths. Besides this example, expectation networks allow for the obtainment
of a large variety of other kinds of social RDs, e.g.:

– Single agent RD, obtained from
“B � SingleAgent :′ Query(PropertyType =?v)′” →
“SingleAgent � B :′ Assert(PropertyType = vi)′”

– Social role RD6, obtained from
‘B � Role :′ Query(PropertyType =?v)′” →
“Role � B :′ Assert(PropertyType = vi)′”

– Public RD (provided that the substitution list for role All contains every agent within
the forum), obtained from
‘B � All :′ Query(PropertyType =?v)′” →
“All � B :′ Assert(PropertyType = vi)′”

– Conditioned social RD, obtained from
Prefix � “B � A :′ Query(PropertyType =?v)′” →
“A � B :′ Assert(PropertyType = vi)′”
Here, “Prefix �” denotes a sequence of messages (or message templates) which
has to precede the Query/Answer pattern. For example, an agent might commit him-
self to a certain RD that has been requested from another agent only if the other
agent agrees with a certain RD by himself (behavioral reciprocity of self-interested
agents).
Since an expectation network can model virtually any kind of interaction pattern,
Prefix could denote highly complex conditions, e.g. auctions for the selling of web
site ratings for the purpose of commercial advertising (i.e., the agents commit them-
selves to agree with the opinion of the auction winner).

3.1 Embedding Social Resource Descriptions Within RDF Documents

To provide a machine-readable format for (simple) social RDs taking the form
{Actor : (resource, propertyType, (value, expectability, normativity, deviancy))},
it seems reasonable to extend a well-established XML-based RD language like the

5 Uttered using a “Deny” performative, for example.
6 Although social roles usually group similarly behaving agents, in our formal framework [7], a

single role can generalize different inconsistent opinions.

40 M. Nickles and G. Weiß

RDF. This can basically be done by means of a replacement of the description parts
of statements with lists of probabilistically annotated propositions. The description
vocabulary for the following example is implicitly given as an XML namespace “V” ,
provided by some fictitious rating organization “description.org”, and through a “Social
Resource Description Rating Meta Language“ namespace called SRDML:

<rdf:Description about=’http://www.SomeCompany.com’
xmlns:s=’http://description.org/schema’>

<V:MinorOrientation>
<SRDML:disjunctive>

<SRDML:boolean strength=0.9 normativity=0.7 deviancy=0
agent=’Entertainment industry’>True</SRDML:boolean>

<SRDML:boolean strength=0.1 normativity=0.7 deviancy=0
agent=’Entertainment industry’>False</SRDML:boolean>

<SRDML:boolean strength=0.3 normativity=0.7 deviancy=0.6
agent=’User community 6’>True</SRDML:boolean>

<SRDML:boolean strength=0.7 normativity=0.7 deviancy=0.6
agent=’User community 6’>False</SRDML:boolean>

</SRDML:disjunctive>
</V:MinorOrientation>

</rdf:Description>

References

1. Delgado, J.: Agent-based Recommender Systems and Information Filtering on the Internet.
PhD thesis, Nagoya Institute of Technology (2000)

2. http://www.google.com.
3. J. Delgado, N. Ishii, T.U.: Content-based collaborative information filtering: Actively learn-

ing to classify and recommend documents. In: Cooperative Information Agents II. Learn-
ing, Mobility and Electronic Commerce for Information Discovery on the Internet. LNAI.
Springer-Verlag, Berlin (1998)

4. http://peoplenet.stanford.edu.
5. http://www.slashdot.org.
6. http://www.w3.org/2001/sw/meetings/tech-200303/social-meaning/.
7. Nickles, M., Rovatsos, M., Brauer, W., Weiß, G.: Communication Systems: A Unified Model

of Socially Intelligent Systems. In Fischer, K., Florian, M., eds.: Socionics: Its Contributions
to the Scalability of Complex Social Systems. Volume XXXX of LNCS. Springer-Verlag,
Berlin (to appear 2003)

8. Brauer, W., Nickles, M., Rovatsos, M., Weiß, G., Lorentzen, K.F.: Expectation-Oriented
Analysis and Design. In: Proceedings of the 2nd Workshop on Agent-Oriented Software
Engineering (AOSE-2001) at the Autonomous Agents 2001 Conference. Volume 2222 of
LNAI., Montreal, Canada, Springer-Verlag, Berlin (2001)

9. http://www.w3.org/RDF/.
10. http://www.w3.org/PICS/.
11. http://www.daml.org/.

A Passport-Like Service over an Agent-Based
Peer-to-Peer Network

Shi-Cho Cha, Yuh-Jzer Joung, and Yu-En Lue

National Taiwan University, Taipei, Taiwan
csc@mba.ntu.edu.tw, joung@ccms.ntu.edu.tw, eric@yuenlue.com

Abstract. We propose Personal Data Backbone (PDB) to provide Passport-like
services over an agent-based peer-to-peer network. The main objective is to bring
the control of personal data back to their owner. By applying technologies in
agents and in peer-to-peer networks, PDB enables flexible and secure personal
data acquisition in a spontaneous network formed by participating users.

1 Introduction

Many information services and applications need personal data for authentication and
other application-specific purposes when users sign on their systems. As more and
more Web-based services are offered, personal data are stored among different service
providers and data repositories. It then takes time and efforts for both users and services
to build mutual understanding, as data are spread over many different places. Moreover,
the lack of accumulation and aggregation of these information often limits the capability
of services to adapt and personalize into user’s preferences.

To relieve users from maintaining copies of personal data at different places, the
so-called Single-Sign On (SSO) services have been developed to allow a user to access
different application services with only a single action of authentication and authoriza-
tion. An SSO acts as the single authority to provide personal profile of each user to
applications. Such services can usually be implemented by Network Information Ser-
vice (NIS) within a local area network, or X.500 and LDAP directory services within
an organization. As the popularity of Web-based applications spreads all over the world,
the heterogeneity of applications and the diversity of personal profiles needed by them
increase. Hence, the need of Internet-wide SSO services merges. For example, Mi-
crosoft’s .NET Passport allows a person to use a single Passport account to traverse all
participating services seamlessly.

However, both users and service providers may feel uncomfortable leaving their data
to a single authority. One such concern could be if their actions will be tracked by the
service secretly, or if they will be forced to use another service or buy another product
for such service. Moreover, service providers may not wish their customers’ data to be
managed by another company (especially when the company may be or may become their
competitor). Furthermore, while the operation of such service can bring up commercial
profits and competition advantages, several similar services may emerge. Consequently,
we could end up again in having to maintain personal data at different SSO services. For
example, a person may have a Passport account to use Passport participating services,

G. Moro, C. Sartori, and M.P. Singh (Eds.): AP2PC 2003, LNAI 2872, pp. 41–46, 2004.
c© Springer-Verlag Berlin Heidelberg 2004

42 S.-C. Cha, Y.-J. Joung, and Y.-E. Lue

and have another account at Liberty Alliance (http://www.projectliberty.org/)
or AOL’s Magic Carpet [1] for similar purposes.

In light of the above problems, one may wonder why not just let people themselves
provide such service? In fact, some simple form of SSO can be easily implemented
on individuals’ computers. For example, current Web browsers can remember IDs and
passwords of the users. When a person wants to login a Web service, he needs only
to input a few alphabets, which then invoke a local procedure to interact with the Web
service to auto-fill the user’s identity and password for the Web service. However, such
local-side implementation makes profile roaming very expensive to implement since
the user’s computer has to be online at any time. Furthermore, the use of a person’s
information must be controlled. A certain form of contractual agreement between users
and the application service providers must be established. Finally, personal data covers
many aspects, from a person’s photos to his current geographic position. Sophisticated
handling of these data is required for a new generation of information services.

Therefore, we propose Personal Data Backbone (PDB), which makes use of both
agent and peer-to-peer technologies to provide Passport-like services. By using peer-to-
peer technology, people can collaborate with one another to achieve better performance,
scalability, availability and reliability of the SSO services. With personal agents, users of
PDB can set their own privacy policies and access rules on using their personal data, and
then have their agents establish privacy and data usage agreements with service providers
even if they are not online. The whole PDB system is currently under implementation.
Here we present its architecture pertaining to SSO services and main design concepts.

2 The System

2.1 Overview

The system architecture at each peer, shown in Fig. 1, is composed of three layers:
Application Service Layer, System Service Layer, and Base Layer. The latter two con-
stitute our peer-to-peer platform (henceforth referred to as MyP2P), over which appli-
cations can be built. In our design, applications are implemented as mobile agents [2,
3] in the Application Service Layer. Mobility allows them to replicate and/or migrate
across different MyP2P platforms to cope with network failures and load balancing. The
agent nature injects autonomy into programs so that they can act asynchronously and
autonomously, and adapt dynamically to the execution environment.

Although our design philosophy on MyP2P is to make it a general-purpose platform
to accommodate various applications, we will focus here only on passport-like services
on top of it. These services are implemented by PDB Service agents and Personal Data
Management (PDM) agents. In general, each PDM agent handles one user’s ‘passport’.
For performance and fault tolerance issues, however, there may be ‘clones’ of a PDM
agent residing at different peers. Likewise, there may be more than one PDM agent on
top of a MyP2P platform at each peer to handle different user’s personal data. To manage
these PDM agents, each peer launches one PDB Service agent. The PDB Service agent
provides bindings between users and their PDM agents and manages the PDM agents to
offer the PDB service.

A Passport-Like Service over an Agent-Based Peer-to-Peer Network 43

Topology Configuration Name Resolution

Message Routing

Base Layer

Platform
Security

Security Guard
Agent

Allocation
Agent

Discovery
Replication and

Immigration

System Service Layer

MyP2P
Platform

Application

Service Layer

Personal Data
Management

Agent

... ...

Agent Dock

Internet

Peer Peer
Peer

Peer

PDB Service
Agent

Fig. 1. System Architecture.

The System Service Layer provides four main services for application agents: Secu-
rity Guard, Agent Allocation, Replication and Immigration, and Agent Discovery. Secu-
rity Guard prevents application agents from improper access to underlying resources, as
well as protects them from being attacked by other (resident and nonresident) application
agents. Agent Allocation mechanism allocates other MyP2P platforms for application
agents (by communicating with the corresponding mechanism in the destination plat-
forms) when they need to be replicated and migrated. The Replication and Immigration
mechanism deals with the actual replication and movement of the agents. It also ac-
cepts replication and immigration requests from other MyP2P platforms, and provides
an ‘agent dock’ to host each incoming agent. (Agent docks are the places agents reside
in the Application Service Layer.) The Agent Discovery mechanism searches for target
agents requested by application agents.

The Base Layer provides services for forming and accessing to the peer-to-peer
network. Similar to Tapestry [4] and Pastry [5], the main design of the Base Layer is
based on the randomized object access scheme proposed by Plaxton et al. [6]. It has
the following main components: Topology Configuration, Name Resolution, Message
Routing, and Platform Security. Topology Configuration maintains a given topology
for MyP2P platforms in the network in the presence of node failures. Name resolution
provides distributed name lookup services issued from the Agent Allocation and Agent
Discovery mechanisms. Message Routing delivers messages to destination agents in the
Application Service Layer, or routes them to the next MyP2P platform. Finally, Platform
Security ensures the integrity of the platform.

2.2 PDB Services

PDB service provides the following four main functions. The opt-in procedure is invoked
when a person wants to use an ISA (Information Service and Application) through PDB

44 S.-C. Cha, Y.-J. Joung, and Y.-E. Lue

2. The user asks the PDB
service to opt-in the ISA.

Local Platform Service

ISA
1. A user wants to use an ISA, but he has never
opted-in the ISA before. So the ISA asks the
user to opt-in.

PDB Service Agent

The user's PDM Agent

3. If the user has not signed-in
before, the PDB Service Agent
requests him to sign-in.

4. The PDB Service agent
obtains a proposal for opt-in
from the ISA.

5. PDB Service agent
asks the user to make a
decision.

6. Actual data
transmission.

Fig. 2. An opt-in scenario.

at the first time. Thereafter, he needs to login the ISA for authentication every time he
wishes to use its service. The administration service allows a person to set and modify his
personal data. Finally, the data service allows ISAs to request data from the backbone.

Before a user can use PDB service, a MyP2P platform must be installed in his local
host, and a PDB Service agent must be launched on top of the platform. In order for the
PDB Service agent to know whom the user is, the user needs to ‘sign-in’ the PDB service.
We call this procedure ‘sign-in’ to distinguish it from the above login function of PDB. In
the sign-in procedure, the PDB Service agent requests the user to input his account name
and password for authentication. The PDB Service agent then calls the Agent Discovery
module in the System Service Layer to find the user’s PDM agent. Recall that PDM
agents may migrate and replicate themselves over the peer-to-peer network. So if no
PDM agent of the user is on the platform (from which the user signs-in), a nearby clone
of the user’s PDM agent will be located and migrated/replicated to the platform. When
the user’s PDM agent is located on the platform, the PDB Service agent uses the data
stored in the PDM agent to authenticate the user.

The opt-in function can be depicted in Fig. 2. After receiving a user’s opt-in request,
an ISA asks the user to request his local PDB Service agent to complete the opt-in
process. This step can be done transparently by redirecting the ISA’s request to the
user’s local platform service, which consists of the user’s PDM agent and a PDB Service
agent on the local peer. When the PDB Service agent receives the opt-in request, the
PDB Service agent checks if the user has signed-in the PDB service. If not, the PDB
Service agent requests the user to sign-in the PDB service as described above. Then,
the PDB Service agent retrieves an opt-in proposal from the ISA. The proposal is based
on the Platform for Privacy Preferences (P3P) [7], which is designed to let a Web site
disclose its privacy preference about what personal data is required by this site and for
what purpose. The PDB Service agent can generate an opt-in page from this proposal,
and sends the page to the user to let him confirm the opt-in process. By reviewing the
opt-in page, the user can decide whether or not to opt-in the ISA. If he decides to opt-in,
the personal data required to complete the opt-in process will be sent to the ISA by the
PDB Service agent, and thereafter he can start using the services provided by the ISA.

In the above scenario, the PDB Service agent may also complete the opt-in process
automatically if the proposal sent by the ISA matches the preferences set by the user

A Passport-Like Service over an Agent-Based Peer-to-Peer Network 45

in his PDM agent, and the user has authorized the PDB Service agent to skip over the
confirmation step in this situation. Furthermore, licenses of using the user’s data can be
issued to the ISA [8,9].

The login process of PDB is similar to the opt-in process, but simpler. When a user
wishes to login an ISA, the PDB Service agent need only tell the ISA the identity of the
user so that the ISA can authenticate the user with the identity. Moreover, when a user
needs to set or modify his personal data and preferences, he can invoke the administration
function of the PDB service. After verifying the identity of the person, the PDB Service
agent modifies the data stored in the person’s PDM agent to serve the update requests.

In the above functions, the PDB Service agent uses personal data stored in a user’s
PDM agent to fulfill the user’s request. ISAs, on the other hand, may request a person’s
personal data actively from PDB, even if the person is not online. This function is also
useful when some personal data may be updated frequently, and the newest version is
required.

2.3 Security

When a PDB Service agent needs a person’s data for operation, it must request a key
from the person (during the sign-in process). ‘Raw’ personal data can then be decrypted
with the key and be used for further operations. For a successful operation of PDB,
some trust must be assumed. To a person, we say that a computer is trusted if he is sure
that the computer is not hacked and all platform components function correctly in the
computer. The platform correctness in turn can prevent frauds in the Application Service
Layer by letting the Security Guard in the System Service Layer detect whether or not an
application agent can be trusted. This can be done using signatures. More specifically,
when an application agent is developed, a standard hash algorithm is used to generate a
code signature from the program code of the agent. To increase the trust, the program
code can also be verified and certified by a consortium.

So we make the following assumption in the system:

Trust Assumption: When a user is using the PDB service, to the user there is
at least one trusted computer in the network (e.g., the computer he signs in).

Such an assumption is reasonable and, in fact, crucial to every secure systems. No
information system can function correctly and securely if there is no trusted computer
a user can use to access the system. Based on the assumption, a user can always find a
trusted peer to request for PDB service. He need not worry about his personal data being
accessed by other unauthorized person while the data are processed because operations
of a PDB Service agent only occur in his trusted computer.

Recall that we wish PDB to offer persistent data service by allowing ISAs to access
a person’s data even if the person is not online or his own computer is not available.
Clearly, data replication and/or migration can be used to facilitate such service. Let us
call a copy (clone) of a PDM agent at a trusted peer primary. The above trust assumption
ensures that there is at least one primary copy of a PDM agent when the user’s own
computer is powered on. To facilitate persistent data service, the primary copy must be
replicated or migrated to another peer while the underlying computer is to be powered

46 S.-C. Cha, Y.-J. Joung, and Y.-E. Lue

off. This is done by the Agent Allocation mechanism in the System Service Layer of
MyP2P.

A fundamental problem behind the replication/migration scheme is that: How does a
peer determine whether or not another peer is trusted? Without a centralized manager,
this problem is considerably difficult, and is still one of the main challenges in peer-
to-peer networks. Our goal here is not to solve the problem. Rather, we assume a trust
determination function for solving the problem, and use it for our replication/migration
scheme in between MyP2P platforms. Such a function need only satisfy a sound require-
ment, namely, if it determines that a peer is trusted, then the peer is indeed trusted. A
very weak trust determination function is to declare all other peers untrusted. In practice,
with the help of some centralized mechanisms, we can usually design a stronger function
for the problem.

In the presence of a trust determination function, if the Agent Allocation mechanism
in a MyP2P platform finds another trusted peer, then the Agent Allocation mechanism
can send the primary copy of a PDM agent to the destination peer, and the data service
on the PDM agent can continue even if the first peer is down. Even if no trusted peer can
be found and no primary copy of a PDM agent is available, we can still allow a limited
support of data service by replicating a portion of the data in a PDM agent to an untrusted
peer. Recall that data stored in a PDM agent are grouped and imposed with different
security control according to their confidential level. For low and non-confidential data,
they can be replicated to an untrusted peer to increase data availability. The partial clones
of a PDM agent in our system are referred to as secondary, and are assumed to be less
critical when under security attacks. In any case, full data service will be reinstalled
when trusted computer(s) are back to the line and the primary copies are restored.

References

1. Newell, C.: AOL quietly launches magic carpet. In: eWeek.com. (2002) Retrieved from
http://www.eweek.com/article2/0,3959,113131,00.asp.

2. Fuggetta, A., Picco, G.P., Vigna, G.: Understanding Code Mobility. IEEE Transactions on
Software Engineering 24 (1998) 342–361

3. Lange, D.B., Oshima, M.: Seven good reasons for mobile agents. Communications of the
ACM 42 (1999) 88–89

4. Zhao, B.Y., Kubiatowicz, J., Joseph, A.D.: Tapestry: An infrastructure for fault-tolerant wide-
area location and routing. Technical Report UCB/CSD-01-1141 , UC Berkeley (2001)

5. Rowstron, A., Druschel, P.: Pastry: scalable, decentralized object location and routing for
large-scale peer-to-peer systems. In: Proceedings of the 18th IFIP/ACM International Con-
ference on Distributed Systems Platforms (Middleware). (2001)

6. Plaxton, C.G., Rajaraman, R., Richa, A.: Accessing nearby copies of replicated objects in a
distributed environment. MST: Mathematical Systems Theory 32 (1999)

7. Cranor, L., Langheinrich, M., Marchiori, M., Presler-Marshall, M., Reagle, J.: Platform for
Privacy Preference (P3P). In: W3C Recommendations. (2002)

8. Cha, S.C., Joung, Y.J.: Online Personal Data Licensing. In: Proceedings of the 3rd Interna-
tional Conference of Law and Technology (LAWTECH2002), (2002) 28–33

9. Cha, S.C., Joung, Y.J.: From P3P to OPDL. In: Proceedings of the 3rd Workshop on Privacy
Enhancing Technologies (PET2003) (2003)

A Robust and Scalable Peer-to-Peer Gossiping
Protocol�

Spyros Voulgaris1, Márk Jelasity2, and Maarten van Steen1

1 Department Computer Science, Faculty of Sciences, Vrije Universiteit Amsterdam,
The Netherlands

{spyros,steen}@cs.vu.nl
2 Department of Computer Science, University of Bologna, Italy

jelasity@cs.unibo.it

Abstract. The newscast model is a general approach for communica-
tion in large agent-based distributed systems. The two basic services—
membership management and information dissemination—are imple-
mented by the same epidemic-style protocol. In this paper we present the
newscast model and report on experiments using a Java implementation.
The experiments involve communication in a large, wide-area cluster
computer. By analysis of the outcome of the experiments we demon-
strate that the system indeed shows the scalability and dependability
properties predicted by our previous theoretical and simulation results.

1 Introduction

The popularity of peer-to-peer systems in the last couple of years illustrates
how the Internet is gradually shifting toward a distributed system that supports
more than only client-server applications. A key issue in peer-to-peer systems is
that distribution of data and control across processes is symmetric. Moreover,
this distribution is done in such a way that processes are highly autonomous
and independent of each other. The important advantage of this approach is
scalability. A well-designed peer-to-peer system can easily scale to millions of
processes, each of which can join or leave whenever it pleases without seriously
disrupting the system’s overall quality of service.

A crucial aspect of large-scale peer-to-peer systems is that they are easy to
manage. Any system that attempts to centrally manage how processes connect
to each other and distribute data and control will fail, notably when processes
join and leave all the time. Instead, it should be a property of the design itself
that the distribution of data and control takes place in an automated fashion
that requires no global management at all. In effect, we are looking at the design
of self-managing systems.

There are many different types of peer-to-peer systems. In most cases, these
systems can be divided into two separate layers. The lowest layer consists of pro-
tocols for handling group membership and communication, whereas the highest
� This work was partially supported by the Future & Emerging Technologies unit of

the European Commission through Project BISON (IST-2001-38923).

G. Moro, C. Sartori, and M.P. Singh (Eds.): AP2PC 2003, LNAI 2872, pp. 47–58, 2004.
c© Springer-Verlag Berlin Heidelberg 2004

48 S. Voulgaris, M. Jelasity, and M. van Steen

layer implements the required functionality for a specific application. The lowest
layer thus forms the core of the peer-to-peer system. Roughly speaking, there
are three types of core systems.

The first, and most popular type is designed to efficiently support content-
based searching. In many cases, these systems operate with centralized index
servers that keep track of where content is located. The index servers are of-
ten constructed dynamically in the form of super peers [15]. Examples include
Gnutella and KaZaa. The second type aims at efficiently routing a request to its
destination through an overlay network formed by the collection of peers. Ex-
amples of such systems are Chord [12], Pastry [11], Tapestry [16], and CAN [10].
A third type deploy epidemic protocols [3]. In these systems, the goal is not
so much enabling point-to-point communication between peers, but rather the
rapid and efficient dissemination of information. Examples in this class include
Scamp [6], and probabilistic reliable broadcasting [4,5,9].

In this paper, we concentrate on information-dissemination based systems
that deploy epidemic protocols. A crucial element in an epidemic protocol is that
a participating peer can randomly select another peer to exchange information.
Traditional protocols supported this random selection by providing a list of
all other participating peers. Clearly, such an approach cannot scale to large
networks. As an alternative, approaches such as described in [4,7] ensure that
a peer always has a list that represents an independent and randomly selected
sample from the entire set of peers.

We have recently developed an epidemic protocol for disseminating informa-
tion in large, dynamically changing sets of autonomous agents. This, so-named,
newscast protocol solves two problems inherent to large sets of agents: (1) in-
formation dissemination, and (2) efficient membership management. The main
distinction in comparison to similar epidemic-based solutions, is that agents can
join and leave at virtually no cost at all, and without affecting the information-
dissemination properties of the protocol.

The associated model of newscasting, that is, the model of information dis-
semination and membership management as presented to agents, is described in
detail in a separate paper [8], along with theoretical analyses partly based on
simulations. To better substantiate our claims regarding scalability, we have im-
plemented the newscast protocol (in Java). We subsequently used this implemen-
tation to conduct a series of experiments that emulate large-scale agent-based
applications on a real network. In particular, we set up a series of experiments
with 128,000 agents scattered across a hierarchically organized cluster of 320 pro-
cessors. These processors, in turn, are geographically spread over four different
sites in the Netherlands.

An important and interesting aspect of these experiments is that the under-
lying communication network is heterogeneous. It includes interprocess commu-
nication facilities on a single workstation, point-to-point local-area high-speed
links, as well as wide-area links. In this way, we are better able to measure
the effect that a real communication infrastructure has on the properties of our
dissemination model.

A Robust and Scalable Peer-to-Peer Gossiping Protocol 49

In this paper, we describe the newscast protocol and report on our experi-
ments involving emulation of large networks of agents. We show that the the-
oretical results, which are based on an idealized underlying communication in-
frastructure, still hold when dealing with a realistic infrastructure, thus further
substantiating our claims that newscasting is a highly robust and scalable model
for information dissemination in large and rapidly changing sets of agents. In the
following we discuss our protocol, the experimental setup, and the results of our
experiments, to end with conclusions.

2 The Newscast Protocol

In our implementation of the newscast model, a large group of agents is con-
nected through a simple peer-to-peer data exchange protocol. The protocol is
extremely simple: each agent knows only a (continuously changing) small set of
peers of which one is randomly chosen to exchange information. In this section,
we start with explaining how the protocol works, after that we explore some
remarkable theoretical properties of its emerging behavior. These properties are
further investigated in Section 3 when we report on our large-scale emulation
experiments.

2.1 Principal Operation

The two main building blocks of our newscast model are a collective of agents
and a news agency, as shown in Figure 1. The basic idea is that the news agency
asks all agents regularly for news by means of a callback function getNews(). In
addition, the news agency provides each agent with news about the other agents
in the collective, again through a callback function newsUpdate(news[]).

The definition of what counts as news is application dependent. The agents
simply live their lives (perform computations, listen to sensors and the news,
etc.) and based on the computations they have completed and the information
they have collected they must provide the news agency with news when asked.

News agency

receiveCache

sendCache

WAN node WAN node

getNews newsUpdate

Correspondent

Agent

getNews newsUpdate

Correspondent

Agent

cache cache

Fig. 1. The organization of a newscast application.

50 S. Voulgaris, M. Jelasity, and M. van Steen

AgentID Application−specific dataTimestampAddress

Cache entry

News item

Fig. 2. The format of news items and cache entries.

The model itself can be fully specified in terms of the functional and statistical
properties of the operations getNews() and newsUpdate(news[]). Instead of this
definitial style of specification, we take a much simpler approach in this paper
by describing the semantics of the model in terms of the newscast protocol, of
which we have shown that it meets the model’s specifications [8].

Each agent has an associated correspondent that runs on the same machine
hosting the agent. The correspondents jointly form the distributed implementa-
tion of the news agency. Each correspondent maintains a fixed-sized cache of c
news items. Whenever an agent passes a news item to its correspondent, the lat-
ter timestamps the item, adds its own network address, and subsequently caches
the item. A news item itself consists of an agent identifier and the actual news
as provided by the agent, as shown in Figure 2.

Correspondents regularly exchange caches as follows. Omitting specific de-
tails (which are found in [8]), each correspondent executes the following five steps
once every ΔT time units (ΔT is referred to as the refresh interval).

1. Request a fresh news item from the local agent by calling getNews(). Add the
item to the cache.

2. Randomly select a peer correspondent by considering the network address
of other (and available) correspondents as found in the cache.

3. Send all cache entries to the selected peer, and, in turn, receive all the peer’s
cache entries. Merge the received entries into the local cache.

4. Pass the received cache entries from the peer agent to the local agent by
calling newsUpdate().

5. The correspondent now has 2c cache entries; it subsequently throws away
the c oldest ones.

The selected peer correspondent executes the last three steps as well, so that
after the exchange both correspondents have the same cache. Note, however,
that as soon as any of these two correspondents executes the protocol again,
their respective caches will most likely be different again.

The protocol does not require that the clocks of correspondents are synchro-
nized, but only that the timestamps of news items in a single cache are mutually
consistent. We assume that the communication time between two correspondents
is negligible in comparison to ΔT (which is generally in the order of minutes).
When a correspondent A passes its cache to B, it also sends along its current
local time, TA. When B receives the cache entries, it subsequently adjusts the
timestamp of each entry with a value TA − TB , effectively normalizing the time
of each new entry to those already cached.

A Robust and Scalable Peer-to-Peer Gossiping Protocol 51

2.2 Properties of Newscasting

As it turns out, this simple model of communication has desirable statistical
properties. To understand the behavior of newscasting, we consider the commu-
nication graphs Gt at different time instants t that are induced by maintaining
caches at each correspondent. Each such graph is constructed from a corre-
sponding directed graph Dt as follows. The vertex set Vt of Dt contains the
correspondents. For correspondents a and b in Vt we have the link a → b if and
only if the address of b is in the cache of a at time t. The cache-exchange algo-
rithm leads to a series of directed graphs, given an initial directed graph D0. The
communication graph Gt is now simply constructed by dropping the orientation
in Dt. Gt expresses the possibility of cache exchanges.

Now consider the series of graphs G0, GΔT , G2ΔT , Note that during a
time interval ΔT each correspondent initiates the cache-exchange algorithm. In
other words, after ΔT time units, all correspondents will have fetched a news
item from their agent, exchanged caches with at least one of their neighbors
(and possibly more), and have passed c news items to their agent. We say that
a communication cycle has completed.

We have conducted simulations with up to 50,000 correspondents, assuming
an idealized communication infrastructure with no communication delays and
packet losses. Our simulations show that even for relatively small cache sizes
(say, c = 20) each graph GkΔT stays connected. Moreover, it turns out that the
average length of each shortest path between two nodes is small, as shown in
Figure 3(a).

In fact, further investigations revealed that the induced communication
graphs have many properties in common with what are known as small worlds [1,
14]. An important property of these types of networks is that they show a rel-
atively high clustering coefficient, which, for a given node, is the ratio of the
number of edges between the neighbors of the node and the number of all possi-
ble edges between the neighbors. For example, in a complete graph all nodes have

1.5

2

2.5

3

3.5

4

4.5

1000 2000 5000 10000 20000 50000

av
er

ag
e

pa
th

 le
ng

th

number of agents

c = 20

c = 40

0.1

0.15

0.2

0.25

0.3

0.35

1000 2000 5000 10000 20000 50000

cl
us

te
rin

g
co

ef
fic

ie
nt

number of agents

c = 20

c = 40

(a) (b)

Fig. 3. (a) Average shortest path length between two nodes for different cache sizes.
(b) Average clustering coefficient taken over all nodes.

52 S. Voulgaris, M. Jelasity, and M. van Steen

0

1

2

3

4

5

6

7

0 20 40 60 80 100 120 140

av
er

ag
e

pa
th

 le
ng

th
 fr

om
 n

od
e

0

complete cycles

growing by 50 each cycle to random old vertex

growing by 50 each cycle to central vertex

random

Fig. 4. Average shortest path length while adding 50 agents every cycle until 5000
agents have been added.

a clustering coefficient of 1 while in random graphs this coefficient is typically
small (if our graphs were random, the clustering coefficient would be expected
to be c/n). Figure 3(b) shows the clustering coefficient for different cache sizes
c and communication graphs GkΔT .

Simulations also show that we need only an extremely simple way of han-
dling membership, which is an important improvement in comparison to other
epidemic models. Consider the worst solution to handling membership that could
possibly disrupt the emergent behavior of our protocol: an agent contacts a well-
known central server and simply initiates the cache-exchange protocol with that
server. This approach systematically biases the content of caches, which now all
depend on what is stored at the central server.

We conducted a simulation experiment in which we admitted 50 new agents at
every communication cycle until 5000 agents had joined the network, after which
no new agents were allowed to join. When measuring the average path length
again, we obtain the results shown in Figure 4. What is seen, is that shortly
after the last 50 agents have been added (i.e., after 100 completed cycles), the
average path length quickly converges to the one we would expect in a stable
graph. We can conclude that even this worst-imaginable membership protocol
does not affect the properties of newscasting. In effect, when a node wants to
join, it needs to know only the address of a single other node and can simply
start with executing the newscast protocol. Leaving is done by simply stopping
communication.

3 Validation of the Newscast Protocol

Using theoretical analyses and simulations, we are able to show that the statis-
tical properties of the protocol meet the specifications of the newscast model.
However, in the world of large-scale systems, theory and practice often diverge.
Therefore, to investigate how the protocol would behave in practice and to fur-
ther substantiate our claims, we conducted a series of emulation experiments.

A Robust and Scalable Peer-to-Peer Gossiping Protocol 53

Emulation, as opposed to simulation, involves implementing the protocol and
conducting experiments on a real network of computers. In our case, we carried
out experiments with a collective of up to 128,000 agents distributed across a
320-node wide-area cluster of workstations.

3.1 The Implementation

In order to experiment with the newscast model described earlier, we imple-
mented its underlying protocol. Java was chosen for portability reasons, allowing
us to easily execute the protocol in heterogeneous environments. Our implemen-
tation is organized as three modules: the core, the application, and the utility
module. The core module implements a correspondent materializing the epidemic
protocol described in Section 2.1. The core module has no dependencies on the
other two modules. It is a self-contained implementation of the newscast proto-
col. All communication is based on UDP. Multiple instances of the core module
can coexist in a single Java virtual machine, behaving as separate, independent
correspondents.

The application module provides the implementation of an agent. One in-
stance of the core module has exactly one associated instance of the application
module. Our experiments were focused on the properties of the epidemic proto-
col itself without considering any particular application. Therefore the agent we
defined has only basic functionality. It returns empty content in the getNews()
operation, and ignores any content delivered to it through the newsUpdate(news[])
operation.

The utility module serves the specific needs of our experiments, such as batch
running, coordinating the experiments, and logging. Exactly one utility module
instance exists in each virtual machine. In particular, the utility module takes
care of starting multiple agent-correspondent pairs each running on a separate
thread within the same Java virtual machine to allow emulation of a large net-
work. It coordinates with utility modules running on other Java virtual machines
(possibly on remote hosts) to determine initial connection addresses for the cor-
respondents. The utility module also contains logging functionality. It periodi-
cally freezes the agent-correspondent pairs running in the Java virtual machine,
logs their state, and then resumes operation. Utility modules coordinate to en-
sure that freezing and resuming for logging occur simultaneously on all the Java
virtual machines spread across the different hosts.

3.2 The DAS-2

We conducted our experiments on the Distributed ASCI Supercomputer (DAS-
2), a wide-area distributed cluster-based system consisting of five clusters of
dual-processor PCs located at different sites across the Netherlands. The cluster
at the Vrije Universiteit consists of 72 nodes, while the other clusters consist of
32 nodes each, giving a total of 200 nodes (400 processors). Each node has two
1-GHz Pentium-III processors, and at least 1GB of RAM.

54 S. Voulgaris, M. Jelasity, and M. van Steen

Nodes within a single cluster are connected by a Fast Ethernet (100Mbps)
network dedicated to their cluster. Clusters, in turn, communicate over wide-
area links, which are shared for all traffic between the universities and which
have shown to support an aggregated bandwidth of 20 Mbps.

3.3 Experimental Setting

We carried out experiments with a network of 128,000 agents distributed across
160 dual-processor nodes on four of the five DAS-2 clusters. We recorded and
analyzed the behavior of the newscast model for three different cache sizes c: 20,
30 and 40. In all three cases the refresh interval ΔT was 10 seconds.

The presented series of experiments was conducted to examine the possible
impact of the underlying network’s heterogeneity on the operation of the news-
cast model. It is, therefore, worth describing the deployment of agents across
the DAS-2 nodes. We used 160-dual processor nodes, selecting 64 nodes from
the cluster at the Vrije Universiteit, and 32 nodes out of three other DAS-2
clusters. We executed two Java virtual machines per node (one per processor),
each Java virtual machine running 400 agents.

The deployment of agents described above presents a desirable property for
our experiments: network heterogeneity. Four different types of communication
were involved, depending on the relative location of the agents communicating:

– Intraprocess communication for agents running in different threads within
the same Java virtual machine.

– Interprocess communication for agents run by separate Java virtual ma-
chines, but on the same DAS-2 node.

– Local-area (or intracluster) communication for agents residing on differ-
ent nodes, but within the same cluster. These agents were communicating
through a 100Mbps Fast Ethernet network.

– Wide-area (or intercluster) communication for agents belonging to different
clusters. This type of communication was carried out over the wide-area links
shared with other wide-area traffic.

This diverse environment (with respect to networking) provided us with a valu-
able testbed for studying the newscast model.

It is important to observe that even though 800 agents run within each DAS-
2 node, more than 99% of the communication between agents is either across
wide-area or local-area links. For any given agent, 799 other agents run on the
same node, and 127,200 run on other nodes, which account for 0.6% and 99.4%
of the total 128,000 agents respectively. As we observed in our experiments, the
items in an agent’s cache are randomly distributed over all the participating
agents, irrespective of their location. Therefore we expect only 0.6% of the total
communication to be within or between processes on the same node, and all the
rest to be across local-area or wide-area links. In particular, agents in the three
32-node clusters are expected to experience 80% wide-area and 19.4% local-area
traffic, while agents in our 64-node cluster are expected to have 60% wide-area
and 39.4% local-area traffic.

A Robust and Scalable Peer-to-Peer Gossiping Protocol 55

Another parameter of our experiments that is worth noting, is the bootstrap-
ping mechanism. By bootstrapping we refer to the procedure of providing agents
with the information required to jump-start the newscast network’s formation.
In principle, a new agent joins by contacting any existing agent and exchanging
caches. When the whole network starts from scratch, a systematic way has to
be present to provide one or more initial communication points to each agent.
In our experiments this task was handled by the utility module. All agents were
provided with the single address of one selected agent. Providing agents with a
choice of (possibly random) agents to connect to initially, enhances the random-
ness of the network in the early cycles. However, a bootstrapping mechanism as
simple and centralized as the one we chose further substantiates our claims of
the protocol’s convergent behavior, as discussed in the following section.

4 Results

This section presents a thorough analysis of the output of our three large-scale
experiments with 128,000 correspondents using cache sizes of 20, 30, and 40, re-
spectively. We will often compare the emerging communication graphs to random
graphs. In all cases, the random graphs we refer to are generated by selecting
exactly c undirected edges randomly for each node. For example, in such a graph
each node has at least c edges (but usually more).

4.1 Statistical Properties of the Communication Graph

Figure 5 illustrates the two most important properties of the emergent com-
munication graphs. The number of cycles actually performed was over 5000,
however, only the initial cycles are depicted because the values remain the same
throughout the experiment indicating a convergent behavior.

The average path length from a node is defined as the average of the minimal
path lengths of that node to all other nodes. To get a finite value we have to

1

2

3

4

5

6

7

8

0 20 40 60 80 100 120 140

av
er

ag
e

pa
th

 le
ng

th

complete cycles

c = 20
c = 40

0

0.2

0.4

0.6

0.8

1

0 20 40 60 80 100 120 140

cl
us

te
rin

g
co

ef
fic

ie
nt

complete cycles

c=20
c=40

(a) (b)

Fig. 5. (a) The evolution of average path length from a node. (b) Clustering coefficient.

56 S. Voulgaris, M. Jelasity, and M. van Steen

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

20 30 40 50 60 70 80 90 100 110

pr
op

or
tio

n
of

 in
st

an
ce

s

degree

random
converged

1e-06

1e-05

0.0001

0.001

0.01

0.1

100

pr
op

or
tio

n
of

 in
st

an
ce

s

degree

random
after 50 iterations

Fig. 6. Degree distribution on (a) linear and (b) log-log scale using the same range. The
depicted values belong to a single converged communication graph with n = 128000
and c = 20 (converged) and a graph with c random edges generated for each vertex
(random).

0

500

1000

1500

2000

2500

70 75 80 85 90 95 100

in
de

pe
nd

en
t c

lu
st

er
s

percentage of removed nodes

c=20
c=20, random graph

c=30
c=30, random graph

c=40
c=40, random graph

0

5000

10000

15000

20000

25000

30000

35000

40000

70 75 80 85 90 95 100

si
ze

 o
f l

ar
ge

st
 c

lu
st

er

percentage of removed nodes

c=20
c=30
c=40

all remaining nodes

(a) (b)

Fig. 7. Partitioning of the communication graph as a function of the percentage of re-
moved random nodes (node failures). The curves belong to a single graph. The largest
clusters of random graphs are omitted for clarity; their relationship to the communi-
cation graphs is similar to the relationship in the case of the number of clusters.

have a connected graph. We can observe very low average path lengths which
coincide with the expected lengths after extrapolation of the simulation data
shown in Figure 3(a). The initial peak is explained by the applied bootstrapping
mechanism described in Section 3. This mechanism results in an initially unbal-
anced neighborhood structure. However, after all correspondents get connected
to the collective, the average path length converges quickly to its final value.

The average clustering coefficient taken over all nodes is shown in Figure 5(b),
and again corresponds to our simulation results. Together with the values found
for average path lengths, we can indeed conclude that our communication graphs
are small-world graphs.

Small-world graphs come in very different flavors however. One interesting
property to investigate is whether our graphs are scale free or not. The degree

A Robust and Scalable Peer-to-Peer Gossiping Protocol 57

of a random node defines a random variable. If this variable is exponentially
distributed (linear on the log-log scale) then the graph is scale free. Figure 6
shows the distribution of the node degree for the case of c = 20 which deviates
the most from the random case.

It can be seen clearly that our communication graph is not scale free. From
a dependability point of view this is an advantage since scale-free graphs are
sensitive to the removal of highly connected nodes (even though they are less
sensitive to random node removal). The effect of node removal in our graphs is
discussed next.

4.2 Robustness to Node Removal

Figure 7 shows the effect of node removal to the connectivity of the communica-
tion graph. Note that the number of clusters decreases when approaching 100%
removal because the remaining graph itself becomes small. The graph shows very
similar behavior to a random graph, especially if the cache is large. These results
indicate considerable robustness to node failures especially considering the size
of the largest cluster which indicates that most of the clusters are in fact very
small and most of the nodes are still in a single connected cluster.

5 Conclusions

In this paper we presented experiments with a Java implementation of the news-
cast model. The experiments involved 128,000 agents communicating with each
other over a wide-area, large-scale heterogeneous cluster of processors.

The outcome of these experiments is particularly valuable since it repre-
sents the real implementation of our model as opposed to previously conducted
simulations, yet the size of the system is comparable with the scale of typical
simulation results as well. The results are in complete agreement with the theo-
retical predictions and simulations presented in [8] providing practical evidence
concerning the correctness of our algorithm and of the statistical properties of
the emerging communication graphs.

As we demonstrated, the series of the communication graphs show stable
small-world properties which make it a dependable and effective device for in-
formation dissemination and membership management. Most importantly, these
properties are not maintained explicitly, but they are emergent from the under-
lying simple epidemic-style information exchange protocol.

References

1. R. Albert and A.-L. Barabasi. “Statistical Mechanics of Complex Networks.” Re-
views of Modern Physics, 74(1):47–97, Jan. 2001.

2. M. Castro, P. Druschel, Y. C. Hu, and A. Rowstron. “Exploiting Network Prox-
imity in Peer-to-Peer Overlay Networks.” Technical Report MSR-TR-2002-82,
Microsoft Research, Cambridge, UK, June 2002.

58 S. Voulgaris, M. Jelasity, and M. van Steen

3. A. Demers, D. Greene, C. Hauser, W. Irish, J. Larson, S. Shenker, H. Sturgis,
D. Swinehart, and D. Terry. “Epidemic Algorithms for Replicated Database Man-
agement.” In Proc. Sixth Symp. on Principles of Distributed Computing, pp. 1–12,
Aug. 1987. ACM.

4. P. Eugster, R. Guerraoui, S. Handurukande, A.-M. Kermarrec, and P. Kouznetsov.
“Lightweight Probabilistic Broadcast.” In Proc. Second Int’l Conf. Dependable
Systems and Networks, pp. 443–452, June 2001. IEEE Computer Society Press,
Los Alamitos, CA.

5. P. T. Eugster and R. Guerraoui. “Probabilistic Multicast.” In Proc. Int’l Conf.
Dependable Systems and Networks, June 2002. IEEE Computer Society Press, Los
Alamitos, CA.

6. A. Ganesh, A.-M. Kermarrec, and L. Massoulié. “Scamp: Peer-to-Peer Lightweight
Membership Servic for Large-Scale Group Communication.” In Proc. Networked
Group Communication Workshop, volume 2233 of Lect. Notes Comp. Sc., pp. 44–
56, Nov. 2001. Springer-Verlag, Berlin.

7. A. Ganesh, A.-M. Kermarrec, and L. Massoulié. “Peer-to-Peer Membership Man-
agement for Gossip-based Protocols.” IEEE Trans. Comp., 52(2):139–149, Feb.
2003.

8. M. Jelasity and M. van Steen. “Large-Scale Newscast Computing on the Internet.”
Technical Report IR-503, Vrije Universiteit, Department of Computer Science, Oct.
2002.

9. A.-M. Kermarrec, L. Massoulié, and A. Ganesh. “Probabilistic Reliable Dissem-
ination in Large-Scale Systems.” IEEE Trans. Par. Distr. Syst., 14(3):248–258,
Mar. 2003.

10. S. P. Ratnasamy. A Scalable Content Addressable Network. PhD thesis, University
of California at Berkeley, Oct. 2002.

11. A. Rowstron and P. Druschel. “Pastry: Scalable, Distributed Object Location
and Routing for Large-Scale Peer-to-Peer Systems.” In R. Guerraoui, (ed.), Proc.
Middleware 2001, volume 2218 of Lect. Notes Comp. Sc., pp. 329–350, Nov. 2001.
Springer-Verlag, Berlin.

12. I. Stoica, R. Morris, D. Karger, M. F. Kaashoek, and H. Balakrishnan. “Chord:
A Scalable Peer-to-peer Lookup Service for Internet Applications.” In Proc. SIG-
COMM, Aug. 2001. ACM.

13. I. Stoica, R. Morris, D. Liben-Nowell, D. R. Karger, M. F. Kaashoek, F. Dabek, and
H. Balakrishnan. “Chord: A Scalable Peer-to-peer Lookup Protocol for Internet
Applications.” IEEE/ACM Trans. Netw., 2003. To appear.

14. D. J. Watts. Small Worlds, The Dynamics of Networks between Order and Ran-
domness. Princeton University Press, Princeton, NJ, 1999.

15. B. Yang and H. Garcia-Molina. “Designing a Super-Peer Network.” In Proc.
19th Int’l Conf. Data Engineering, Mar. 2003. IEEE Computer Society Press, Los
Alamitos, CA.

16. B. Y. Zhao, J. Kubiatowicz, and A. D. Joseph. “Tapestry: An Infrastructure for
Fault-tolerant Wide-area Location and Routing.” Technical Report CSD-01-1141,
Computer Science Division, University of California, Berkeley, Apr. 2001.

Group Formation Among Peer-to-Peer Agents:
Learning Group Characteristics

Elth Ogston, Benno Overeinder, Maarten van Steen, and Frances Brazier

Department of Computer Science, Vrije Universiteit
Amsterdam de Boelelaan 1081a,

1081 HV Amsterdam The Netherlands
{elth, bjo, steen, frances}@cs.vu.nl

Abstract. This paper examines the decentralized formation of groups within a
peer-to-peer multi-agent system. More specifically, it frames group formation as
a clustering problem, and examines how to determine cluster characteristics such
as area and density in the absence of information about the entire data set, such as
the number of points, the number of clusters, or the maximum distance between
points, that are available to centralized clustering algorithms. We develop a method
in which agents individually search for other agents with similar characteristics in
a peer-to-peer manner. These agents group into small centrally controlled clusters
which learn cluster parameters by examining and improving their internal com-
position over time. We show through simulation that this method allows us to find
clusters of a wide variety of sizes without adjusting agent parameters.

1 Introduction and Background

Forming groups of similar agents can serve many purposes within a multi-agent system.
Group membership can provide an alternative to directory services when performing
associative matching, and the process of coalition formation requires a manner of iden-
tifying preliminary groups. Clustering is the abstract problem of dividing a set of data
into groups of like items. The clustering problem, however, has been primarily studied
in the centralized case of grouping items that have been gathered together in a database.
In the context of multi-agent systems, on the other hand, we consider large groups of
distributed agents [5] [8]. These agents ideally require only peer-to-peer interactions to
perform their basic operations in order to achieve scalability, flexibility and indepen-
dence of components. Centralized clustering is a difficult problem because clusters can
have many unknown characteristics, such as size and shape, which make them difficult
to define. Decentralized clustering is even more problematic because global information
such as the size or range of a data set is unavailable. In previous work [6] we discussed a
method by which agents could perform decentralized clustering, provided that we could
predefine the desired number of items in a cluster. In this paper we consider a manner
in which agents can learn cluster area and density, thus allowing them to perform on a
much broader range of data sets without having to adjust parameters. We demonstrate,
through simulation experiments, collections of agents representing two dimensional
points grouping themselves. Initial experimental results show that these agents, without

G. Moro, C. Sartori, and M.P. Singh (Eds.): AP2PC 2003, LNAI 2872, pp. 59–70, 2004.
c© Springer-Verlag Berlin Heidelberg 2004

60 E. Ogston et al.

changing experimental parameters, can identify clusters or varying density with between
20 and 250 points.

The clustering problem has been widely studied [2], however it is usually assumed
that points in the data set can be compared by some central “clusterer”. In peer-to-peer
systems, on the other hand, data is distributed widely over a network and this assumption
no longer holds. Further, in multi-agent systems the notion of agent autonomy can
exclude the use of a single central comparison function. By decentralizing clustering
we thus exacerbate the problem of how to tell a computer the characteristics of the
clusters that we wish to find. One of the great difficulties encountered when designing
clustering algorithms is defining the term “cluster” in a way that a computer can interpret.
Intuitively a cluster can be seen as a connected dense region of points, surrounded by a
less dense region. Finding clusters is thus finding boundaries between density regions.
Because these boundaries are generally fuzzy, computer algorithms need a more concrete
definition. To achieve this additional restrictions are used to make clusters calculable.

The K-means algorithm [4], for instance, fixes the number of clusters in the data set
and, hidden in its total error squared measure, makes the assumption that clusters are
roughly spherical. Given this information, clusters will extend to their natural boundaries,
provided that centoids are chosen correctly. The k-means passes and various starting
heuristics are methods of estimating the “correct” centroids.

Hierarchical algorithms [2], (we will use the top down minimal spanning tree al-
gorithm as an example), split clusters along the largest existing edge between points to
obtain each level. By doing this they in essence say “if there is a density boundary, this
edge must cross it”. This method identifies boundaries nicely, but leaves the problem of
choosing which level of the tree contains the correct clustering. By basing this on some
statistic, like the total error squared or the number of clusters, additional assumptions
are introduced that are, again, dependant on the data set.

Density based clustering specifically looks for density boundaries by walking
through a data set from point to nearest point. Here it is clear to see that a definition
of a boundary is required. DBSCAN [1] specifically says that clusters are areas with at
least a given density. DBSCLADS [9] makes the assumption that clusters are of roughly
uniform density, with a parameter to define “roughly.”

Overall, the standard data set dependant “clues” used by clustering algorithms in-
clude:

– the number of clusters, or analogously, the expected cluster size,
– the minimum gap between clusters,
– the minimum density of clusters.

Each of these gives a global standard for the data set, but can be used in decision
functions locally. This allows centralized clustering algorithms to be parallelized, pro-
vided that global information about the data set can be shared between processing units
[7]. P-CLUSTER [3] for instance parallelized k-means by distributing each k-means
pass and synchronizing centroid information between passes.

In [6] we showed how clustering could be performed by a decentralized multi-agent
system, provided that we could set beforehand the maximum size of the clusters we
wished to obtain. In fact, knowing any of the above clues makes the form of decentralized

Group Formation Among Peer-to-Peer Agents: Learning Group Characteristics 61

clustering that we studied fairly easy, as it gives clusters an indication of when they have
reached their boundaries. The real challenge occurs when these clues are absent, or do
not hold for all clusters in the data set.

In this paper we show how clusters that lack any central coordination between them
can learn cluster parameters by watching their internal composition over time. This
allows them to find clusters with varying cluster sizes and densities, and even to identify
clusters with widely differing characteristics within the same data set. Whereas in [6]
we study the problem of clustering in a fully decentralized way across possibly large
networks and the speed of convergence of this clustering, in this paper we study the
problem of dynamically determining when to continue or to stop clustering.

Section 2 of this paper summarizes our base peer-to-peer clustering algorithm from
previous work. Section 3 discusses the information available to an agent cluster when
attempting to discover correct data cluster parameters. We then describe how this can be
used, given that clusters themselves are centrally controlled and assuming that a cluster
can correctly detect when it internally contains more than one data cluster. Section 4
then describes a method for doing this detection without needing to know the complete
details of the data held by the agents in the cluster, and provides some experimental
results exploring the range of data sets that the resulting method can handle.

2 The Basic Decentralized Agent Clustering Method

When defining our agent grouping method we consider very large systems with at least
thousands of agents, like the internet, which must be distributed because their data cannot
be collected centrally for reasons of size, privacy or dynamics. We thus specify that our
agents must communicate in a decentralized manner, though we allow some cooperative
group operations to be done by a central elected member of the group. For this reason we
consider agent groups that are much smaller then the system as a whole, containing tens
to hundreds of agents. We assume a global addressing system exists, allowing agents
to send a message to any other agent, but limit the memory available to agents to store
addresses so that they only know of the existence of a few neighbors at any one time.

The problem of grouping similar agents is, in the abstract, a clustering problem.
Clustering in general considers a set of data items, S that must be partitioned into
subsets, s1, s2... sk, such that items within each subset have more in common with each
other then they do with points in other subsets. In the agent domain we consider each
agent as an item with particular characteristics, and with the goal of finding other like
agents. We depict these agents as having a main “attribute” which describes its overall
properties, and a number of “objectives” which describe its current short term goals for
which a “matching” objective in a partner agent must be found. For instance, our agents
could represent documents where an agent’s attribute would be the document text, its
objectives could be what it currently considers to be keywords for that text, and matches
could be based on the distance between keywords in a given ontology. To group our agents
we allow them to independently find matches using a peer-to-peer search protocol. We
then choose some of the stronger matches that are formed to link agents into clusters of
cooperating agents. Over time these clusters update their agents’ choice of matches and
their own membership, based on better matches that are encountered through the search

62 E. Ogston et al.

Fig. 1. A diagram of two clustered agents.

protocol. This process results in agents self organizing into clusters that approximate
underlying clusters within their data. Figure 1 diagrams two clustered agents.

To create measurable experiments with these agents we consider the simple case
where agents represent a set of two-dimensional points, generated to contain underlying
data clusters. We initiate an experiment by creating one agent for each data point in the
set. Each agent is given five elementary objectives, that are simply the data point. These
objectives each use a matching function that measures the Euclidean distance between
their point and that of a potentially matching objective. This distance is compared to
a value learned over time indicating how small a distance represents a good match.
To initiate an experiment we randomly pair up objectives, creating a graph in which the
agents are nodes, each with five random edges to other agents.We call these edges “links.”
Links represent communication paths between agents. They can be of one of three types:
“unmatched links” between two objectives that have nothing in common, “matched
links” between two objectives that have agreed that they are similar, and “connected
links” between strongly matched objectives. Initially each agent is considered to be an
individual cluster.

Clusters simultaneously carry on two cycles of operations. The first is shuffling
unmatched links to give objectives new potential matches. The second is making matched
links into connections and breaking weaker connections so as to be able to replace them
with better ones. Groups of agents that are joined by a path of connected links are defined
as being a single cluster. They elect one member of the cluster as the cluster head, which
keeps a map of the cluster composition and is thus able to make decisions that require
an overview of the cluster as a whole. The cluster head is the only agent that knows the
cluster composition, all other agents know only the address of the cluster head and the
address of the five objectives that they are linked to in other agents.

The search for new matches is performed independently by the agents’ objectives.
This search is done by objectives first testing initial unmatched links to determine if
a match should be formed. If an objective finds a match it informs its cluster head.
Otherwise one objective in the link pair sends its neighbor’s address to its own cluster
head. The cluster head collects these rejected addresses, and after a time shuffles them,
returning new addresses to the waiting unmatched links, who can then begin the process
over again. During this search we maintain the invariant that any objective at any time
has only one neighbor whom it can contact an who can contact it.

Group Formation Among Peer-to-Peer Agents: Learning Group Characteristics 63

When two objectives agree on a match, they both inform their cluster head of the
new matched link along with the Euclidean distance between their points. The cluster
heads stores a list with details of all matched links in the cluster. It considers matches
with a shorter distance to be better then longer ones.

The creation and breaking of connected links, which changes cluster composition,
occurs “every now and then”, based on some internal timing in the cluster head. A cluster
head first selects its best matched link and attempts to make it into a connected link by
sending a request through the link to the neighboring cluster head. If the request is
accepted, a new connection is agreed, one cluster head surrenders its data to the other,
forming a single cluster, and the cycle ends. Clusters, however, have a maximum size
that limits how many agents they can contain. If a connection request is refused because
the resulting cluster would be too large both clusters consider operations to change their
size. This involves checking if they want to break one of their connected or matched
links. The cluster head chooses one of its longer links to break. Breaking a matched link
does not effect cluster size, but leaves objectives free to find better matches. Breaking a
connected link requires the cluster head to calculate a new cluster map. If this no longer
forms a connected graph the cluster head appoints a new second head and sends it the
information for the new cluster to be broken off.

The process above is described formally in our previous work [6]. In that paper we
found that clusters will grow to their maximum size and over time consolidate to contain
most of the points in an contiguous area. If the maximum size is set to be as large as a
real data cluster and smaller than two neighboring data clusters, then the agent clusters
will correspond to data clusters. Thus agents can self organize to find data clusters,
with the limitation that the maximum size of the agent clusters must be set correctly
beforehand. Most centralized clustering algorithms contain similar limitations, and thus
we found that decentralized clustering compared favorably. The size of data clusters is,
however, a parameter that can change for each data set, and even between clusters in a
data set. Moreover, it is something that intelligent agents might be able to learn, giving
an important advantage to agent clustering methods.

3 Growing Clusters

In order to be able to discover natural clusters in data, our agent clusters need a way to
determine when they should increase or decrease their maximum size. To understand
the operations open to an agent cluster we must first consider what data it has available.
Imagine ourselves as a cluster, looking over the data landscape. Our entire view of the
world is composed of our internal data and links to a few outside objectives. Agents in
a cluster each know their own data point, and for each matched and connected link the
length of that link. We should not assume that agents know the data point of the agent
on the other end of a link since points may be complex or private collections of data.

From this picture a cluster as a whole knows:

– The density of the ‘found’ points for its region, i.e. the internal agents’ points.
– Possibly, the existence of some external points that suggest if its surroundings are

of equal density, indicated by matched links of a short length.

64 E. Ogston et al.

(a) (b)

(c) (d)

Fig. 2. The development of two clusters.

A cluster however does not know:

– The actual density of the area it covers, as there could be points in that area that
have not yet been found.

– The actual density of its surroundings, since if a cluster only has distant matches, it
does not mean that nearby ones do not exist.

From this information a cluster can compare its internal density to the density of its
neighbors in the peer-to-peer system. However, unless this area of the system contains
most of the relevant points form the data set, this tells us nothing about the data clusters.
Luckily we can also assume that the majority of nearby points in the data set will group
together. Our base procedure changes clusters by creating and breaking connections,
favoring shorter connections, and thus naturally forms compact clusters over time. Figure
2 is a series of 4 time shots showing a system with data clusters containing 50 points
each, being clustered by agents with a maximum cluster size of 25. We see how two
agent clusters that end up splitting a data cluster grow over time. The last frame of figure
2 shows that a too small maximum cluster size results in a large data cluster being split
into smaller regions. From this we may assume that an agent cluster contains most of the
points in the area it covers after some time has passed and its composition has become
stable. On the other hand, we can never be absolutely certain that this is the case since (i)
we cannot be certain that cluster composition is stable at any point in time and (ii) in very
large systems finding all the points in an area can take a long time. We will, however,
use this assumption to grow the maximum cluster size, and make up for mistakes by
shrinking clusters again should they become too large.

Figure 2 is a birds-eye view, not the actual picture seen by the cluster. To make
cluster-wide decisions, including growing, we collect, in the cluster head, data from the
individual agents. For the basic clustering algorithm the cluster head needs to store a
map of the cluster which includes the addresses of agents in the cluster, the length of the
matched links currently held those agents, and the length of the connected links between

Group Formation Among Peer-to-Peer Agents: Learning Group Characteristics 65

those agents. Figure 4(b) shows the ordered series of connected link lengths for the
cluster whose data points are pictured in figure 4(a). This, along with a similar list with
the length of the matched links, is the view of the world available to the cluster head.

Let us hypothesize that we have a function, shouldSplit(), that returns either that
a cluster is a good size, or that certain links should be broken to form better, smaller
clusters. We could then regulate cluster growth as follows: when considering a size
change clusters first call this function to determine if they are currently too big. If so
they spilt, resetting the maximum sizes of the resulting clusters. If not they should
possibly be larger. To check this they call the shouldSplit() function again, this time also
considering their best match as part of the cluster. If this still results in a good cluster we
assume that there are other points that could belong to this cluster but do not because it
is too small, and increase the maximum size.

The shouldSplit() function essentially calculates if an agent cluster’s data belongs
to one or more data clusters. Thus, given the data points in the cluster and the external
data point for potential connections, in theory we should be able to use any existing
clustering algorithm to implement it. Because the function is only used internally in
relatively small clusters it is acceptable to use any of the centralized algorithms.

To test this method of cluster growth we ran some experiments with the resulting
agent algorithm, using a “perfect” shouldSplit() function. This “perfect” function was
given the minimum gap between clusters for a data set, and returned that any connected
links longer then this gap should be broken. We generated 20 data sets using the the
generation algorithm in [6], each containing 25 clusters with a fixed radius of 1, a
gaussian internal distribution of points, and 20 to 200 points. We clustered these data
sets, giving agents an initial maximum cluster size of 15. Measuring cluster stability to
determine when to check for growth is difficult, and thus we simply guessed that after
a long enough period the cluster will be about stable. Thus, we added to the algorithm
in section 2 that every 10 times a cluster gets to the point where it checks if it should be
breaking a link, it instead checks to see if it should change its maximum size, using the
shouldSplit() function as described above. Figure 3 shows the resulting agent clusters for
15 of these data clusters. The majority of data clusters were found correctly. At point A
an agent cluster has been incorrectly split into two. This occurs because the connections
within a cluster are only an approximation of the minimal spanning tree for the cluster.
These cluster will most likely rejoin after a time. At point B we see an agent cluster that
has grown too large and now consists of two data clusters. Again, over time this mistake
should also be corrected. Of the 500 clusters we generated we observed 23 incorrectly
split clusters, and 15 too large clusters after running the algorithm for a fixed amount of
time. We choose this time to be about twice as long as it takes clusters to initially grow
to the correct size, thus giving them some time to improve. From this data we conclude
that the above method is valid way of learning cluster size, provided that we can come
up with a adequate real implementation of the shouldSplit() function.

4 Determining When a Cluster Is Too Large

As we discussed in the previous section, if we know some information about the data set,
like cluster density or size, the shouldSplit() function is relatively simple to implement,

66 E. Ogston et al.

Fig. 3. Example clustering, given a perfect shouldSplit() function

we only need to check if the current cluster conforms to the known criteria. Without
this information a cluster essentially needs to run a clustering algorithm internally to
decide if it should be one or more clusters. However, this isn’t as easy as it sounds.
Agents’ attributes can be large or complex data points, such as entire text documents or
user profiles, which would be expensive to store in the cluster head where shouldSplit()
is calculated. Furthermore, when checking for cluster growth we also considered the
nearest matched data point. This is data from an agent in another cluster, and might be
private. For these reasons, in this section we experiment with a shouldSplit() function
that only uses the data already available to the cluster heads.

In order to run the basic clustering algorithm cluster heads need to store some sum-
mary information about their matched and connected links: the lengths of those links.
For estimating cluster density this information might be sufficient. Instead of clustering
the data points themselves to implement shouldSplit(), as we suggested above, we could
cluster the length of the connected links. Assuming that connected links are between
nearby agents (in the data space), this would determine if the connected links form one
set, indicating a continuous cluster density, or two (or more) sets, indicating that some
links are over a larger gap between two data clusters. If two sets are found breaking all
of the longer connections should split a large cluster into two (or more) good clusters.
Clustering link lengths in this manner has the further advantage that it considers lower
dimensional data, and is thus less computationally intensive.

Clustering link lengths, however, requires that we can tell the difference between
longer links between clusters and random fluctuations in link length, due to the random
placement of points and the fact that connections are only an approximation of the
minimum spanning tree between points. The examples in figures 4 and 5 show two
clusters, one of the correct size, and one that should be split. These data clusters were
created to have a random gaussian distribution of points, according to the algorithm
described in [6]. Frame (a) of the figures shows the data points in the clusters, frame (b)
shows the the lengths of each of the connected links in the clusters, sorted from largest
to smallest. A comparison of the two figures shows that a large change between two
consecutive links indicates that a cluster that should be split. However, graph 4(b) shows
that the good cluster also contains relatively large changes in link length. We have found,
though experimentation, that it is not enough to simply consider the ratio between the

Group Formation Among Peer-to-Peer Agents: Learning Group Characteristics 67

(a) Cluster points (b) Ordered connected-link lengths

(c) Normalized E2 series (d) Second derivative of 4(c)

Fig. 4. A good agent cluster.

(a) Cluster points (b) Ordered connected-link lengths

(c) Normalized E2 series (d) Second derivative of 5(c)

Fig. 5. An agent cluster that contains two data clusters.

largest drop and the average drop. Any value for this ratio high enough to avoid splitting
the majority of good clusters, also failed to recognize some large clusters, eventually
allowing the system to conglomerate into a single cluster.

In place of considering only the distance between consecutive lengths, we need a
measure that takes into account all lengths when contemplating a split. To do this we
assume that the ordered link lengths form two sets, those that are too long, and those that
are good. Our task now is to determine where to divide the link length series into these
two sets. We create a series of all the possible divisions, first with all lengths in the same
set, then with the highest value in the first set and all others in the second, next with the
two highest values in the first set, and so forth. Considering each of these groupings as
a clustering of the lengths, we calculate a measure of the goodness of these clusterings,
the total error squared used in the k-means algorithm . Total error squared is defined as:

E2 =
k∑

i=1

∑
x∈Ci

‖x−mi‖2.

68 E. Ogston et al.

given k clusters C1, . . . ,Ck, where Ci has a mean value mi for 1 ≤ i ≤ k. E2 sums
the square of the distance between the vector of points in each cluster, and the average
vector for that cluster, thus indicating how far a clustering is from a perfect clustering.
Figures 4(c) and 5(c) show the resulting E2 series from the example clusters.

A correct clustering of a data set has a lower E2 value than an incorrect clustering.
However, a clustering into two clusters will also have a lower E2 then a clustering with
one cluster. For this reason we cannot simply choose the partition of lengths with the
lowest E2. We also need to determine if an E2 graph indicates that our lengths form
one group or two. Consider the length series {1000, 1000, 1000, 1, 1, 1}. The correct
partition {1000, 1000, 1000}, {1,1,1} will have an E2 of 0, while the incorrect partitions
to either side of it in the E2 series, {1000, 1000, 1000, 1}, {1,1} and {1000, 1000},
{1000, 1, 1} will have high E2 values. This results in a discontinuity in the E2 series.
On the other hand, while the E2 series for the length set {1000, 999, 998, 997, 996, 995}
also falls and rises, it does so gradually. Thus we calculate the second derivative of the
E2 series, E2”, depicted in 4(d) and 5(d). Large changes in length result in peaks in the
second derivative. We use the approximation for the second derivative for an equidistant
series of points: f”(x) = (y2 −2y1 +y0)/h2. For the distance between points, h, we use
1/N where N is the number of connected links in the cluster. This scales the calculation
by the size of the cluster.

A large agent cluster made up of two perfect data clusters each containing an infinite
number of identical points and placed an infinite distance apart will exhibit a peak of
infinity in the E2” curve described above, while two correct agent clusters for this data
will have a constant E2” curve with value 0. We, however, do not have perfect clusters,
and thus the large peaks in bad agent clusters will be well below infinity, while good
agent clusters will still display small peaks. There are several reasons for this: data points
within a cluster are spread out, clusters are close together, and our clusters have small
numbers of data points making our estimate for the second derivative imperfect. On
the other hand, all that is important is that we can find a cutoff value that distinguishes
between too-high low values, and too-low high values. For the clusters in figures 4 and
5 any value between 500 and 15,000 would do. By normalizing the E2 curve between 0
and 1 we make this cutoff value independent of the radius of the data clusters. However,
the number of data points in a cluster does effect it. Small clusters with randomly placed
points will show more variation in their strength values, raising the height of peaks that
should be 0. Less data points will also result in a cruder estimate of discontinuities in the
E2”, lowering the height of peaks. From this we observe that small clusters are much
harder to distinguish then larger ones, and that a cutoff that works for small clusters
should also be sufficient for larger ones.

In experiments with a range of data set we find that a cutoff of 175 consistently
produces good clusters. This value is fairly low, and sometimes results in links within
good clusters being broken. However, as these links are usually the long ones that reach
across the cluster breaking them still leaves a connected graph of shorter links intact.
Agent clusters that have grown to include more than two data clusters can contain more
then the assumed two sets of link strengths, resulting in several peaks in the E2” series.A
cutoff value of 175 however is low enough that it usually detects the last peak, splitting
the cluster correctly. Due to the scaling of E2, an extremely large link strength can

Group Formation Among Peer-to-Peer Agents: Learning Group Characteristics 69

Fig. 6. Example clustering, using the shouldSplit() function form Section 4.

overshadow other large link strengths, however, since the clusters repeatedly check if
they are too large, a cluster that is not completely split at one time will be split the next
time round.

Figure 6 shows the resulting algorithm run on 36 randomly placed clusters, with
radii between 1 and 1000, and 20 to 250 points. We see some of the same mistaken joins
and splits seen in the more even clusters in figure 3. Overall, however, we find that our
clustering algorithm does a good job of identifying the clusters, even when they are of
very different size and density, and even in some cases where two such clusters are not
well separated. This is a large improvement over our original agent algorithm which
would have been unable to cluster this data due to the fact that the clusters have largely
varying numbers of points.

5 Discussion and Conclusions

Overall, we have replaced a very data dependant clustering parameter, the expected max-
imum cluster size, with a cutoff parameter measuring sudden changes in link density,
that allows agents to detect a much larger range of clusters with different areas and den-
sities. We have shown some initial experiments indicating that this method is effective.
However, we still need to fully explore the range of clusters that it can handle.

Ideally we would like agents to find clusters, within the same data set, independent
of the number of points they contain, their density and the distance between them. The
method we presented in this paper is dependant on the number of points, because of of
our estimate of E2”. However, our clusters are even more limited in size by their internal
communication, meaning that we only need to be able to deal with clusters with up to a
few thousand points.

The method in this paper is also dependant on the ratio of the distance between
points within a cluster and the distance between clusters themselves. Two clusters that
are overlapping will look like the same cluster to most algorithms. Two clusters that are
close together can also look the same to our algorithm since it doesn’t consider all of the
spatial data available. Thus we find a chaining effect where a string of points between

70 E. Ogston et al.

two clusters will lead to them being considered as one. This is a common problem in
density based clustering. Our algorithm will also be unable to distinguish small gaps
between clusters whose density gradually decreases, as small increases in the length of
links between clusters can look like part of the natural increase in link length within the
cluster.

Finally, our method of cluster boundary detection is also dependant on the distribution
of points within a cluster.The experiments here presented clusters with a random gaussian
distribution, showing that we can deal with smoothly changing distances between cluster
points. On the other hand, sudden changes will be detected as gaps between clusters. Such
sudden changes can occur in very regular clusters, for instance in clusters with points
that are placed evenly on a grid. All of the above issues require further experimentation
to determine the exact range of clusters that our agents can now handle.

References

1. Ester, M., Kriegel, H., Sander, J., and Xu, X.: A Density-Based Algorithm for Discovering
Clusters in Large Spatial Databases with Nose. Second International Conference on Knowl-
edge Discovery and Data Mining (1996) 226–231

2. Jain, A.K., Murty M.N., Flynn, P.J.: Data Clustering: A Review. ACM Computing Surveys,
Vol 31, No. 3, September (1999). 264-322

3. Judd, D., McKinley, P., and Jain A.: Large-Scale Parallel Data Clustering. IEEE Transactions
on Pattern Analysis and Machine Intelligence. Vol 20, No. 8. August (1998). 871-876

4. Kaufman, L. and Rousseeuw, P. Finding Groups in Data: an Introduction to Cluster Analysis,
John Wiley and Sons (1990)

5. Klusch, M. and Gerber, A.: Dynamic Coalition Formation Among Rational Agents. IEEE
Intelligent Systems. Vol 17, No. 3 (2002) 42-47

6. Ogston, E., Overeinder, B., Van Steen, M., and Brazier, F.: A Method for Decentralized Clus-
tering in Large Multi-Agent Systems. Second International Joint Conference on Autonomous
Agents and Multi-Agent Systems (2003) To be published

7. Olson, C.: Parallel Algorithms for Hierarchical Clustering. Parallel Computing 21, (1995)
1313-1325

8. Shehory, O. and Kraus, S.: Task Allocation via Coalition Formation among Autonomous
Agents. Proceedings of the Fourteenth International Joint Conference onArtificial Intelligence
(1995) 655-661

9. Xu, X., Ester, M., Kriegel, H., and Sander, J.:A Distribution-Based Clustering Algorithm for
Mining in Large Spatial Databases. Proceedings of the 14th International Conferece on Data
Engineering (1998) 324-332

A Pheromone-Based Coordination Mechanism
Applied in Peer-to-Peer

Kurt Schelfthout and Tom Holvoet

Department of Computer Science, Katholieke Universiteit Leuven
Celestijnenlaan 200A,
3001 Leuven, Belgium

{Kurt.Schelfthout, Tom.Holvoet}@cs.kuleuven.ac.be

Abstract. In this paper, we discuss the principle of synthetic
pheromones, which we view as a high level coordination mechanism
suitable for scalable, distributed systems, such as peer to peer sys-
tems. We present a software abstraction for the application of syn-
thetic pheromones, building on an existing coordination mechanism, ob-
jectspaces. The coordination principle is evaluated on the problem of
search in a file-sharing P2P system.

1 Introduction

Some distributed systems have very stringent requirements concerning decen-
tralization, scalability and robustness. For example, a peer to peer system needs
to deal with a very large number of peers, joining or leaving the system at will,
preferably operating without a central component. Other examples include ac-
tive networks [1](networks that are able to dynamically reconfigure themselves
in response to faults or changing quality of service requirements) and manu-
facturing control [2](where it is difficult to gather and plan centrally because
information may be outdated very rapidly).

These systems seem like a natural application domain for multi-agent systems
(hereafter written MAS). An agent is a problem solving entity, that is situated
in a local environment (i.e. is no global or centralized component and has no
complete view of the system), and is naturally able to adapt itself to harsh
circumstances.

Our interest is in the development of a coordination infrastructure for multi-
agent systems. A coordination infrastructure provides mechanisms by which
agents can coordinate their activities in a concurrent and distributed world.
A typical example is the division of work among autonomous agents, and the re-
construction of the end result after the work is done. Coordination is especially
important in the kind of systems mentioned above, since they are inherently
composed out of multiple distributed entities that need to cooperate for the
system to function.

Our main focus is on achieving coordination through environment-mediated
communication - this means that there is no direct interaction between agents,

G. Moro, C. Sartori, and M.P. Singh (Eds.): AP2PC 2003, LNAI 2872, pp. 71–76, 2004.
c© Springer-Verlag Berlin Heidelberg 2004

72 K. Schelfthout and T. Holvoet

instead agents communicate or interact indirectly by changing their environ-
ment. This change can be noted by other agents, who are then able to react
appropriately. This is interesting because agents thus become highly decoupled :
in order to communicate, the sending agent does even not need to be alive when
the receiving agent gets the message.

An existing approach for coordinating agents is the tuplespace approach,
first introduced for concurrent computing in Linda [3], and later on refined and
varied upon, notably for object-oriented and distributed computing (Objective
Linda [4], CO3PS[5] . . .). It remains an active research area, with notable recent
variants being MARS [6] and Lime [7].

Presented here is an extension of objectspaces with support for synthetic
pheromones, the virtual variant of substances ants (among others) use to achieve
a coordinated behavior on the colony level. This is discussed in detail in Sec-
tion 2. In the following section, we elaborate on our implementation of syn-
thetic pheromones, that is build on top of an existing objectspace architecture,
CO3PS[5], augmented with a meta-layer [8] that makes it easier to extend the
objectspace with new mechanisms. We indicate some design and implementation
issues. Furthermore, the new principles are evaluated on a file-sharing Gnutella-
like [9] P2P system.

2 Pheromones as Dynamic Objects

The underlying principle of synthetic pheromones [10] is based on the mechanism
ants (among others) use to find food. A pheromone is a chemical substance an
ant can drop in the environment. The pheromone then propagates (by Brownian
motion) through the environment, as well as evaporates over time. Ants for ex-
ample use it to build a path from the nest to a food source, by laying pheromone
trails to the food.

These trails are governed by two important dynamics. The first is the prop-
agation of pheromones: the stronger the trail, the further it propagates, and the
more it attracts other ants (from distances further away). While there is food
remaining, ants keep on reinforcing the trail, attracting even more ants. The
second important dynamic is the evaporation of the trail: once the food is gone,
no more ants are reinforcing the trail, and all pheromones eventually evaporate,
thus stop “misleading” ants. Evaporation is a “forgetting” factor for the sys-
tem. This keeps the system responsive to changes. This scheme appears to be
very robust and scalable in practice. Therefore, we would like to apply it as a
coordination mechanism in software, as for example in [10].

A pheromone in our (software) system is represented as a passive object in an
objectspace. Pheromones can thus be read from and put into the objectspace.
Also, our ants (agents) live in a graph environment, each node being an ob-
jectspace, connected to its neighbors using link objects (a special kind of passive
objects).

The data structure to represent a synthetic pheromone is fairly straightfor-
ward. The two most important values are a current strength of the pheromone

A Pheromone-Based Coordination Mechanism Applied in Peer-to-Peer 73

(used to discriminate between two pheromone paths - the stronger is the most
likely to be followed) and a direction, which indicates the direction of the trail.
Another property is a threshold value. When the strength falls beneath this
threshold, the pheromone is deleted from the system.

While describing the data structure of a pheromone is fairly straightforward,
adding support to the system so that the pheromones dynamics (an essential
part of the coordination mechanism) are also simulated is another cup of tea.
Traditional objectspace technology only provides passive objects, that can be
put into the objectspace, and active objects, the agents themselves. There is
no support for what we call dynamic objects: objects that can be put into an
objectspace but that can change over time without agent intervention. This is
achieved by allowing dynamic objects to execute some code before and after
they are put into an objectspace. So, they can change both themselves and any
objectspace before and after they are put in or taken out of an objectspace.

An implementation was done in Java as a meta-layer upon CO3PS[5] as fol-
lows. DynamicObject is an abstract base class that defines two methods:
preAction(ObjectSpace os,String operationName) and
postAction(ObjectSpace os, String operationName). When a dynamic ob-
ject is put in an objectspace, the objectspace first calls the preAction method
with the target objectspace as an argument. This method executes completely
before the dynamic object enters the objectspace. Once this is done, and the
object is in, the postAction method is called. When a dynamic object is taken
or read from the space, before the object is returned to the agent, the preAction
method is called. Afterwards, thus after the agent is in possession of the object,
the postAction method is called. Dynamic objects can distinguish between being
put in or taken out by looking at the operationName parameter, that can be
either “Take”, “Read” or “Put”.

A pheromone is then a subclass of such a dynamic object. Propagation of
the pheromone can be done after it is inserted into an objectspace. For a prop-
agating pheromone, the postAction method gets all the objectspaces the tar-
get objectspace is connected to, and puts a new version (equal to the original
pheromone, with a strength decreased by a propagation factor) of itself in all
these connected objectspaces. Thus a local propagation of the pheromone is
achieved. Since this can trigger a chain effect, it is crucial that the propaga-
tion factor is smaller than one. This ensures that the pheromone’s strength will
eventually fall below its threshold, thus removing it from the system.

Evaporation is implemented using a preAction: before it is put into an ob-
jectspace, the pheromone obtains a time stamp with the current time. Now,
every time it is taken out of the space, it reduces its own strength with a factor
proportional to the difference between the time it was put in (the timestamp
obtained earlier), and the current time. Once it has reached a value below it’s
threshold, it removes itself from the objectspace and thus is not returned to the
agent - as if there is no pheromone. Once again, if the evaporation factor is well
chosen a pheromone will eventually disappear from the system.

74 K. Schelfthout and T. Holvoet

Notice that dynamic objects are more generic than pheromones - they can
for example be used to achieve a multicast (similar to the propagation described
above, but without changing the contents of the message). Evaluating some of
their other possible uses for coordination purposes will be the subject of future
work.

3 Case Study: A P2P System

To validate the synthetic pheromones approach, we applied it to the problem
of searching data in a distributed P2P system. To this end, we built a simple
simulation of such a network. Each peer in the sumulation is represented by a
single objectspace. This objectspace contains a number of passive objects, that
point to the logical neighbors of that peer (the known peers). Each objectspace
can also contain a number of resources, that can be of various kinds (represented
by a Resource object in this simple example). On each objectspace peer, a query
generator agent is connected that periodically generates a query for a randomly
chosen resource. This generator agent simulates a user of the P2P system.

The query is in fact a small mobile agent, that wanders from objectspace
to objectspace, searching for its “food”: a Resource object to match its query.
Once it has found such a resource, it returns to the peer-objectspace it came
from, leaving a pheromone on every objectspace along the path it walked. A
query agent that is looking around for a certain resource can check at each peer-
objectspace whether there are any pheromones that may be useful for the query
it is trying to resolve. If so, it is inclined to follow these.

The idea is then that, when some queries are performed frequently, a path
will emerge to a resource matching these queries, thus making the search faster,
while still being able to adapt to changing circumstances. The algorithm followed
by a query agent is the following:

1. at each node, if a matching resource is not found, read all pheromones from
the objectspace that lead to a resource that fulfills the agent’s query. To this
end, each pheromone has a Query object associated with it, representing the
query the dropping agent was looking for. Agents can filter on the available
pheromones in a space and only take into account pheromones that match
their own query. The strength of the pheromone indicates the agent’s pref-
erence to go in that direction: all strengths are summed, and the probability
an agent takes the direction is equal to the strength for the direction divided
by the total pheromone strength. When no pheromones are available, the
agent simply picks a direction at random.

2. if the resource is here, report to the originating peer that the resource is
found, and walk back along the path followed, putting pheromones on every
objectspace along the way.

Tests and results. Tests were done on a small network of 200 nodes, with one kind
of resources, and new queries for a random resource were generated periodically
at each peer.

A Pheromone-Based Coordination Mechanism Applied in Peer-to-Peer 75

We did experiments in two kinds of environments: one where the resource
the agents had to find was abundant (resource was available in 1 in 10 nodes),
and the other where it was sparse (resource in 1 in 100 nodes). First we used
a Gnutella-like search agent as reference experiments. This agent is cloned to
all possible outgoing directions at every objectspace until it reaches a hop count
limit and then dies. This limit was set to three. This agent returned a successful
query result in 79% of the cases for the abundant resource setting. It found a
result 13% of the time for the sparse resource setting.

For the ant-like agent, every query is resolved by a single agent, and the
maximum number of objectspaces it can visit is set to fifteen (this number does
not include the hops on the way back, dropping pheromones). The pheromones
the agent dropped evaporate with an evaporation factor of 0.9, and propagate
with a propagation factor of 0.9.

In the abundant resources setting 32% of the queries were successfully found,
over about 400 generated queries. However, after 700 queries, the hit rate in-
creases to 53%. It is obvious that the Gnutella agent has a much better hit rate
than the ant-like agent. This is because the Gnutella agent can search a lot more
nodes: by construction, the network has an average degree (outgoing links per
node) of 6, so it searches 63 = 216 peers per search. In this simple problem, this
amounts to almost the complete network (not taking into account loops and iso-
lated nodes). The ant-like agent searches only 15 peers. In this light, the result
of the ant-like agent is fairly good. To verify this statement, we ran some tests
where we did allow the ant-like agent to clone itself. We allowed a maximum of
two clones per new objectspace (thus less than all the outgoing directions the
Gnutella agent would clone to), and reduced the maximum number of hops from
15 to 5. As expected, this resulted in an increase from 32% to 41% successes.

In the sparse resources setting, the hit percentages were a lot lower. Only 4%
of the queries was returned successfully. Allowing the ant agent to clone itself at
most twice, as above, resulted in 10% successes, which is no significant difference
from the success rate of the Gnutella agent.

Although in most cases the success percentage of the ant-like agent is lower,
it can be seen that the difference can be made smaller or even non-existent if we
allow the pheromones to stabilize (thus running the simulation longer), or when
we allow some limited cloning of the agent. The advantage of this approach is
then that it allows a better usage of bandwidth, at the cost of more storage
space and CPU power on the individual peers. We think this is a good trade-off,
given the fact that bandwidth is still much more expensive than storage space
or CPU cycles.

Discussion. Further tests will be performed to assess the performance of the
algorithm, as well as refinements of the algorithm. A main problem we will
tackle is the controlled evaporation and propagation of pheromones. Tuning of
the strength, propagation and evaporation rate is a manual process, and depends
much on the concrete problem.

Choosing a good evaporation factor is difficult since it is dependent on the
work load of the peers: if lots of agents gather on one peer, they cannot all be

76 K. Schelfthout and T. Holvoet

scheduled at the same time. As a result, some agents may miss a pheromone be-
cause it is already evaporated before they are scheduled to execute. The proposed
extension will make the system more adaptive to these kinds of problems.

Another problem to face is be the problem of scalability. Dropping
pheromones at each peer may result in a blowup of the space required at each
space. There is a trade off here: one can limit this space by setting a larger
evaporation factor (meaning pheromones will evaporate quicker), however it will
become more difficult for the agents then to put down a lasting path (i.e. the
search will have to be much more popular). Another way to limit space com-
plexity is to collapse specific searches into more general searches (e.g. foo*.jpg
into f*.jpg). Again, some information is lost, yet storing too much information
may lead to an unmanageable system.

4 Conclusion

This is a progress report on the design of a coordination framework for use
in large, open distributed environments. We introduced the notion of synthetic
pheromones as an interesting coordination strategy, and proposed the concept of
dynamic objects as a useful abstraction of these pheromones. As an evaluation,
we presented an algorithm for distributed search in a P2P network, and reported
results of the simulations.

References

1. Di Caro, G., Dorigo, M.: AntNet: A mobile agents approach to adaptive routing.
Technical Report IRIDIA/97-12, Université Libre de Bruxelles, Belgium (1997)

2. Jennings, N.R., Corera, J.M., Laresgoiti, I.: Developing industrial multi-agent
systems. In: Proceedings of the First International Conference on Multi-agent
Systems, (ICMAS-95). (1995) 423–430

3. Carriero, N., Gelernter, D., Leichter, J.: Distributed data structures in linda. In:
Proc. 13th ACM Symposium on Principles of Programming Languages. (1986)

4. Kielmann, T.: Objective Linda: A Coordination Model for Object-Oriented Parallel
Programming. PhD thesis, Dept. of Electrical Engineering and Computer Science,
University of Siegen, Germany (1997)

5. Holvoet, T.: An Approach for Open Concurrent Software Development. PhD
thesis, Department of Computer Science, KULeuven, Belgium (1997)

6. Cabri, G., Leonardi, L., Zambonelli, F.: Mars: A programmable coordination ar-
chitecture for mobile agents. IEEE Internet Computing 4 (2000) 26–35

7. Murphy, A., Picco, G.P., Roman, G.C.: Lime: a middleware for physical and logical
mobility. In: Proc. of the 21th International Conference on Distributed Computing
Systems (ICDCS-21). (2001)

8. Coninx, T., Holvoet, T., Berbers, Y.: Using reprogrammable coordination media
as mobile agent execution environments. In: ECOOP - European Conference for
Object Oriented Programming - 8th Workshop on Mobile Object Systems. (2002)

9. The Gnutella homepage: http://gnutella.wego.com/ (2002)
10. Brueckner, S.: Return from the Ant - Synthetic Ecosystems for Manufacturing

Control. PhD thesis, Humboldt University Berlin (2000)

Incentive Mechanisms for Peer-to-Peer Systems

Bin Yu and Munindar P. Singh

Department of Computer Science
North Carolina State University
Raleigh, NC 27695-7535, USA

{byu, mpsingh}@eos.ncsu.edu

Abstract. Most of the existing research in peer-to-peer systems focuses on proto-
col design and doesn’t consider the rationality of each peer. One phenomenon that
should not be ignored is free riding. Some peers simply consume system resources
but contribute nothing to the system. In this paper we present an agent-based peer-
to-peer system, in which each peer is a software agent and the agents cooperate
to search the whole system through referrals. We present a static and a dynamic
pricing mechanism to motivate each agent to behave rationally while still achiev-
ing good overall system performance. We study the behavior of the agents under
two pricing mechanisms and evaluate the impact of free riding using simulations.

1 Introduction

Peer-to-peer (P2P) systems are currently receiving considerable interest in both industry
and academia. P2P systems have emerged as a promising way to share files (Napster,
Gnutella, and FreeNet), computing resource (SETI@home), and other valuable informa-
tion, e.g., reputation information [16]. P2P systems have also been studied in academia
recently, e.g., CAN [10], Chord [14], and Pastry [11]. These projects study distributed
hashing algorithms. Given an object, the algorithms guarantee to locate a peer that has
that object. However, most of the present research has been focused on protocol design
concerns such as file lookup, data replication, and load balancing. Typically, current
approaches don’t consider the rationality of each peer and simply assume that the peers
will follow the given protocols.

One phenomenon that should not be ignored is free riding. Since users do not benefit
directly from sharing files with others, many users choose to decline the requests from
others. Free riding is found in many P2P systems but is not punished [4,9]. For example,
in Gnutella, there is a significant amount of free-riding users. Adar and Huberman found
that 70% of the Gnutella users did not share any content files and 90% did not answer
to any queries from other peers [1]. Uncontrolled or excessive free riding in a P2P
network leads to network congestion at some hotspot peers and the degradation of
system performance. It is thus important to design some mechanisms that encourage
peers to contribute and reduce free riding behavior in the P2P networks.

This paper presents an agent-based peer-to-peer system, e.g., a referral system, in
which each peer is a software agent and the agents cooperate to search the whole system
through referrals. Agents are rational and self-interested, and so they may not always
follow the protocols as the designer expects. Individuals participating in a referral system

G. Moro, C. Sartori, and M.P. Singh (Eds.): AP2PC 2003, LNAI 2872, pp. 77–88, 2004.
c© Springer-Verlag Berlin Heidelberg 2004

78 B. Yu and M.P. Singh

can contribute in two ways: The first is simply by answering the queries. The second is
by actively giving referrals, thus providing the “glue” that holds the system together. In
a querying process, the agents could play one of the following three roles:

– requesters, who request and obtain answers from the referral systems.
– providers, who answer the queries from requesters.
– intermediaries, who provide referrals and facilitate interactions among requesters

and providers.

The study of referrals is important for the development of agent-based peer-to-peer
systems that lack specialized agents such as brokers or facilitators [2]. MINDS and Refer-
ralWeb are two previous approaches for referral systems. MINDS emphasizes learning
heuristics for referral generation [5], whereas ReferralWeb focuses on how to bootstrap
the referral system [6]. More recently, we focus on the effects of topology dynamics on
information flows and consider how to efficiently search large-scale unstructured P2P
systems, e.g., social networks, with the help of agents who act only on the basis of local
knowledge [17]. However, the problem of free riding remains to be addressed. Many
agents simply ignore the requests and may not give any answers.

In order to control free riding, we introduce pricing mechanisms into referral systems.
We view the referral systems as a strategic game, in which each agent has a utility function
over their possible actions. We assume that a rational agent plays a strategy to maximize
its own expected utility. Free-riding is an example of strategy where rational users free
ride and consume a resource but do not produce at the same level as their consumption.
We study the behavior of agents under two pricing mechanisms and then evaluate the
impact of free riding using experiments. Our goal is to design some incentive mechanisms
that motivate each agent to behave rationally while still achieving good overall system
performance [8,13].

The rest of this paper is organized as follows. Section 2 provides an overview of
peer-to-peer systems and referral systems. Section 3 describes the design of pricing
mechanisms and related micropayment protocols. Section 4 presents some experimental
results. Section 5 summarizes the relevant literature. Section 6 discusses the main themes
and some directions for future research.

2 Agent-Based Peer-to-Peer Systems

The term peer-to-peer is a generic label for network architectures where all the nodes
offer the same services and follow the same behavior. The topology of peer-to-peer
systems could be structured, e.g., CAN [10], Chord [14], and Pastry [11], or unstructured,
e.g., Napster, Gnutella, and FreeNet. In this paper we only consider the unstructured P2P
systems. There are three main alternatives for the implementation of unstructured P2P
systems.

– Centralized indexes: The best example is Napster. Napster uses a centralized
database to index the files each peer has in the system. To look for a file, a peer
first sends a request to the database, and then gets a list of other peers who may have
the files.

Incentive Mechanisms for Peer-to-Peer Systems 79

– Pure P2P: The best known examples are Gnutella and FreeNet. Both of them have
a pure distributed architecture, where there is no centralized database. All the peers
in the systems establish a connection with others through request propagation.

– Hybrid solutions: Hybrid solutions have recently emerged, for example, FastTrack.
FastTrack has some supernodes, which are used for indexing the contents of part of
the system and play a major role in the organization of the systems.

2.1 Peer-to-Peer Systems

In P2P systems, a P2P node broadcasts a request to its peers, who propagate the request
to their peers, and so on. Messages that are broadcast are labeled by a unique identifier,
which is used by the recipient to detect where the message comes from. To reduce
the network congestion, all messages are characterized by a given TTL (Time to Live)
that defines the scope of searches. On passing through a node, the TTL of a forwarded
message is decreased by one. When the TTL reaches zero, the message is dropped.

However, many P2P systems form in an ad-hoc manner and do not consider the
interests of the peers and dynamics of the topology. In this paper we present agent-based
P2P systems, in which each peer is a software agent. The agent can learn about which of
its peers are more effective than others, and optimize the searching process based on its
past experience. Next we introduce a class of agent-based peer-to-peer systems, referral
systems, in which each peer is an agent, and the agents cooperate to search the whole
systems through referrals.

2.2 Referral Systems

Intuitively, in a referral system, each agent maintains a list of its acquaintances. A query
in natural language specifies what information is being sought. A query from the agent
is sent to agents of the selected contacts. An agent who receives a query can decide if it
can answer or not (Each agent is associated with a user, who will eventually answer the
query.). If not, the agent may respond with referrals to others. In referral systems, the
requesting agent does not propagate the request to its peers. All referrals are sent back to
the requesting agent, who tracks the search process using a graph and adaptively directs
or ends the process.

Each agent maintains models of its acquaintances. The closest acquaintances are
called neighbors. An agent sends its query initially only to some of its neighbors. If an
agent receives a referral, it may pursue the referral even if the referred party is not already
an acquaintance—this is how acquaintances are added. An agent adapts its models of its
acquaintances from its interactions with others, e.g., when they ask or answer a query.
Each agent is allowed only a small number of neighbors; however, no hard limit is
imposed on the number of acquaintances. Periodically, an agent may promote some of
its acquaintances to becoming its neighbors and also demote some existing neighbors to
make room for the new ones.

Each agent maintains two kinds of models: a profile for itself; and an acquaintance
model for each of its acquaintances. We capture these models via the vector space model
(VSM) [12], a classical information retrieval technique. The vectors in VSM are term
vectors indicating a weight for each term. In our formulation, the terms correspond to

80 B. Yu and M.P. Singh

different areas of expertise. The expertise of each agent is modeled as a term vector.
Similarly, the query is modeled as a term vector.

In VSM, the similarity between two term vectors is defined as the cosine of the
angle between them. We define the similarity between a query and an expertise vector
as the cosine of the angle between them, but scaled by the length of the expertise vector.
Intuitively, for two agents with expertise in the same direction, the one with the greater
expertise is more desirable, whereas the traditional definition would treat them alike.

Definition 1. Given a query vector Q = 〈q1, q2, . . . , qn〉 and an expertise vector E =
〈e1, e2, . . . , en〉, the similarity between Q and E is defined as:

Q�E =
∑n

t=1 qtet√
n

∑n
t=1(qt)2

For example, consider a query vector Q = 〈0.1, 0.9〉 and two expertise vectors
E1 = 〈0.5, 0.5〉 and E2 = 〈1, 1〉. In VSM, E1 and E2 are equally similar with the query
vector Q, but in our approach, E2 is better than E1, since Q�E2 > Q�E1.

The sociability of an agent reflects its ability to give good referrals. The intuition
is that some agents may not be good experts, but may be well connected and may give
good referrals. Therefore, the relevance of a neighbor to a given query depends not only
on the similarity of the query to the user’s expertise, but also on the weight assigned to
sociability versus expertise.

Definition 2. The relevance of a query vector Q to Pj is computed as Q�Pj = (1 −
η)(Q�Ej) + ηSj , where Ej is the expertise of Pj , Sj is the sociability of Pj , and η is
the weight given to sociability.

Our previous work studied the effects of η on the quality of referral systems [18].
We found that a certain emphasis (during learning and querying) on the agents’ referring
ability improves the quality of the system, but that an overemphasis on referrals at the
cost of expertise is not useful. For simplicity, we only consider the case η = 0.3 here.

Each agent learns its profile and its acquaintance models based on an evaluation of
the answers received as well as the referrals that led to them. A referral graph encodes
how the computation spreads as a query originates from an agent and referrals or answers
are sent back to this agent.

Definition 3. A referral r to Aj returned from Ai is written as 〈Ai, Aj〉, we say Ai is a
parent of Aj and Aj is a child of Ai.

For convenience, we include the initial query among the referrals. This enables us
to write a referral chain of length l for a query originating with Ar as 〈Ar, A1, . . . , Al〉.
Then ancestor and descendant are easily defined based on parent and child, respectively.

The referral chains for a given query induce a directed graph whose root is the
originating agent. The depth of a referral is its distance on the shortest path from the
root. Our algorithms ensure that the graph remains acyclic.

Definition 4. A referral graph G(Q) for a query Q is a rooted directed graph (Ar, Λ, R),
where Ar is the requesting agent (root), Λ = {A1, A2, . . . , An} is a finite set of agents
(vertices) that includes Ar, R ⊆ Λ × Λ is a set of referrals (edges).

Incentive Mechanisms for Peer-to-Peer Systems 81

Ar

A2

A5

A4

A3

A1

A6

Fig. 1. A referral graph generated from a query. The requesting agent is black; the agents that have
been queried are gray; the agent who have not been queried are white.

Definition 5. A referral r = 〈Ai, Aj〉 is redundant for a referral graph (Ar, Λ, R), if
and only if Ai, Aj ∈ Λ and Aj is an ancestor of Ai with respect to R.

Clearly, an acyclic referral graph includes no redundant referrals. In the context of
Figure 1, a referral 〈A4, A1〉 would be redundant, since A1 is an ancestor of A4. Referral
〈A4, A2〉 is not redundant, since it introduces no cycles.

3 Mechanism Design

Much of the existing research in P2P systems, including referral systems, assumes that
peers or agents will always follow the protocols. However, some agents, representing
rational users, may deviate from a designed protocol in order to maximize their outcome.
Recently, Shneidman and Parkes advocate mechanism design of P2P systems, in which
peers are expected to be rational and self-interested [13]. Feigenbaum and Shenker
consider similar problems in distributed algorithmic design. They discuss the challenges
of distributed mechanism design in P2P systems and overlay networks with techniques
like redundancy and cryptography [3].

We study the mechanism design problem in the context of referral systems. We
discuss some micropayment protocols in referral systems, and then study the behavior
of agents and the impact of free riding using experiments.

3.1 Types of Agents in Referral Systems

Given a query, some agents may respond unconditionally, and others may respond only
if they have some rewards. We categorize the agents in referral systems as one of the
following three types.

– Altruistic: agents always follow the protocols and give answers or referrals if they
can.

– Rational: agents play a strategy to maximize their expected outcome.

82 B. Yu and M.P. Singh

Answer

Payment

HasAnswer

Agent A Agent B

Query

Fig. 2. A referring process involving two agents A and B, where A sends a query to B.

– Irrational: agents do not follow a strategy modeled by the mechanism. Antisocial
or malicious agents, for instance, prefer strategies that hurt other agents even when
these strategies reduce their own utility.

The altruistic and irrational agents are outside of our discussion. In this paper we
only focus on rational agents that can strategize about their behavior.

3.2 Micropayment Protocol

A natural approach is to charge agents for every query and to reward them for every
referral or answer. 1 In this section we first describe a simple micropayment mechanism,
in which the costs for referrals and answers are fixed for all agents. We then present a
more complex protocol, where the costs are dynamic. Suppose,

– α is the cost or reward for one or more referrals given for a query.
– β is the cost or reward for an answer to a query.
– T is the initial budget for each agent, e.g., 500 points.

We illustrate the micropayment protocol using two simple examples.

– First, we consider the situation only involving two agents A and B. Agent A sends
a query to one of its neighbors B. If agent B finds that it can answer the query, it
will answer with a HasAnswer message. Agent A will decide if it would like to pay.
If A agrees and pays the necessary points, agent B will send the answer to A. In
this process,

• The cost for agent A is β and the balance for agent A becomes T − β.
• The reward for agent B is β and the balance for agent B becomes T + β.

– Second, we consider the situation involving three agents A, B, and C. Agent A
sends a query to B, and B finds that it cannot answer the query. However, B has
some neighbors who may answer the query from A. B responds with a HasReferral
message. Agent A will decide if it would like to pay for the referrals. Agent A

1 Another possible payment model is a flat rate membership fee. However, the flat fees are
unrelated to agent’s strategies, and may not be helpful for the free riding problem.

Incentive Mechanisms for Peer-to-Peer Systems 83

receives a set of referrals after it pays to B. Suppose one of the referrals leads to
agent C and all others lead to dead-ends. C responds with an answer after A pays
the points to C.

• The cost for agent A is α + β and the balance for agent A becomes T − α − β.
• The reward for agent B is α and the balance for agent B becomes T + α.
• The reward for agent C is β and the balance for agent C becomes T + β.

Algorithm 1 Constructing a referral graph
1: Suppose agent Ar is the requesting agent, set Λ is the agents being visited.
2: Initially Λ = {Ar}. For any agent Ai ∈ Λ, Ar sends a query to Ai.
3: (If Ai = Ar , it means that Ar first sends a query to some of its neighbors).
4: if (Ai returns a HasAnswer message) then
5: Ar pays the points to Ai

6: Ar receives the answer from Ai

7: else if (Ai returns a HasReferral message) then
8: Ar pays the points to Ai

9: Ar receives a set of referrals from Ai

10: For any referral r = 〈Ai, Aj〉,
11: if (Aj /∈ Λ) then
12: Ar appends r to the referral graph
13: Ar adds Aj into Λ
14: else if (Aj ∈ Λ) and (Aj �= ancestor(Ai)) then
15: Ar appends r to the referral graph
16: else
17: Ignore referral r
18: end if
19: end if

Algorithm 1 presents the process of constructing a referral graph from a set of
referrals. For example, in Figure 1, requesting agent Ar sends a query to its neighbors
A1 and A2. A1 refers to A3, who refers to A4. A4 refers to A1, A5, and A6. A2 refers A6.
Suppose A5 and A6 claim they have the answer, and Ar pays to both of them. Eventually
A6 returns an answer, but A5 doesn’t. The costs (rewards) for these agents are,

– The cost for Ar is 4α + 2β.
– The reward for each of A1, A2, A3, and A4 is α.
– The reward for each of A5 and A6 is β.

3.3 Dynamic Pricing

A more complex case is that the costs or rewards are dynamic. Since different agents pro-
vide different qualities of services and they may place different prices for their referrals
and answers. Also, some agents claim they have the answers or referrals, but they may
not respond after the requesting agent pays, e.g., A5 in Figure 1. The requesting agent

84 B. Yu and M.P. Singh

needs to decide which service it would like to buy, based on the history of responding
agents, and the number of agents who can provide the services.

We assume that each responding agent produces results randomized around a certain
quality for referrals and answers. But the quality of referrals and answers from different
agents may be different. As mentioned in Section 2, each agent has a profile and a set of
acquaintance models. Suppose Ar is the requesting agent, and {A1, A2, . . . , An} are a
set of acquaintances of Ar. Ar has two selling prices in its profile: α′

Ar
for one or more

referrals (given for a specific query), and β′
Ar

for an answer. Similarly, for any agent Ai,
1 ≤ i ≤ n, Ar has two reserve prices in Ai’s acquaintance model: αAi for one or more
referrals and βAi

for an answer.
The values of α and β are used as the baselines for both selling prices and reserve

prices. For example, at time t0 (which is local to agent Ar), given a requesting agent Ar

and any of its acquaintances Ai,

α′
Ar

(t0) = αAi
(t0) = α

β′
Ar

(t0) = βAi
(t0) = β

The selling prices are updated as follows

– The two selling prices will decay with a decaying coefficient ρ at every time interval
t, where 0 < ρ < 1. For example, given a agent Ar, its selling price for a referring
service at time t0 + t is updated as α′

Ar
(t0 + t) = ρ ∗ α′

Ar
(t0).

– The selling prices of a referring service or an answer will increase with a factor σ
when any other agents would like to pay the price, where 1 < σ < 2.

The reserve prices are used to estimate if the selling prices from other agents are
reasonable. For example, at time ti, agent Ar receives a set of sell bids of answers from
sellers {A1, A2, . . . , Am}. For any seller Aj , the reward for agent Ar is

βAj
(ti) − β′

Aj
(ti)

where βAj (ti) is the reserve price of an answer in the acquaintance model for Aj at
time ti and β′

Aj
(ti) is the selling price of an answer in the profile of agent Aj .

Similarly, for referring services, the requesting agent Ar computes the reward as

αAj (ti) − α′
Aj

(ti)

Given a set of referring services or answers, the requesting agent will choose the
services from the highest to the lowest rewards. After the requesting agent receives a
service, it or its user will evaluate the quality of the service and revise the reserve price
for the service. The reserve prices are updated as follows at time ti if the agent is satisfied
with the service from agent Aj ,

αAj
(ti) = αAj

(ti) + ω1 (for referring services)
βAj (ti) = βAj (ti) + ω2 (for answers)

Otherwise,

αAj
(ti) = αAj

(ti) − ω1 (for referring services)
βAj (ti) = βAj (ti) − ω2 (for answers)

where 0 < ω1 < α and 0 < ω2 < β.

Incentive Mechanisms for Peer-to-Peer Systems 85

4 Experimental Results

Our experiments are based on an extension of a simulation testbed previously developed
for information access [18]. The experiments involve between 100 and 500 agents.
Each agent is modeled in terms of its interest (describing the services it is interested in
purchasing) and its expertise (describing the services it is able to offer). Both interest
and expertise are captured as terms vectors of dimension 5.

The agents are limited in the number of neighbors they may have, here 4. The length
of each referral chain is limited to 4. Moreover, we introduce a probability ϕ between
0 and 1 to model any free riding agents Ai. Agent Ai will generate an answer from its
expertise vector upon receiving a query with the probability ϕ even when there is a good
match between the query and its expertise vector.

In each simulation cycle, we randomly designate an agent to be the requester. An
agent may query some of its neighbors. When an agent receives a query, it may answer
the query based on its expertise vector, or may give a referral to some of its neighbors. The
originating agent collects all possible referrals, and continues the process by following
some of the suggested referrals. Each agent may keep track of certain acquaintances.
In our simulation, we allow 12 acquaintances. Periodically, each agent decides which
of its acquaintances are dropped and which are promoted to neighbors (a subset of
acquaintances).

We initialize the network of agents in the following manner. Following Watts and
Strogatz [15], we begin from a ring but, unlike them, we allow for edges to be directed.
We use a regular ring with 100 nodes, and 4 out-edges per node (to its neighbors) as a
starting point for the experiment.

The initial budget for each agent is 500. The baselines for prices of a referring
service and an answer are 1 and 10, respectively. Other parameters for dynamic pricings
are defined as follows,

– Decaying coefficient ρ = 0.9 for every 100 cycles.
– Factor σ = 1.1.
– Other factors ω1 = 0.1, ω2 = 1 (We choose the values of ω1 and ω2 in the same

ratio as α and β).

Note that all these parameters are fixed and equal for all agents. An answer is good
if and only if the similarity value between the query and the answer is above 0.2.

4.1 Balance of the Free Rider

We suppose, of the total 100 agents, only one agent is a free rider. Its responding prob-
ability ϕ is zero. Figure 3 shows the balance of the free riding agent under fixed and
dynamic micropayment protocols. As intuitively expected, the free riding agent can-
not survive under either micropayment protocol. The balance of the free riding agent
becomes zero after 1200 cycles under fixed pricing mechanism and 900 cycles under
dynamic pricing mechanism. The agent who runs out of its budget has to purchase more
points with money. In a sense, no one can free ride any more, because they have to pay
for the services they receive from others.

86 B. Yu and M.P. Singh

Fig. 3. Balances of the free riding agent under different pricing mechanisms

Fig. 4. Selling prices of high-quality services

4.2 Prices for High-Quality Services

Our second experiment studies the selling prices of referrals and answers for an expert
agent, where each dimension of its expertise vector is initialized as 1. For example,
the selling price of answers (from the expert agent) increases from 10 to about 55
and the selling price of referrals increases from 1 to 15 after 1000 cycles (Figure 4).
A consequence of dynamic pricing is that the requesting agents have to pay more for
the high-quality services. The prices will help to adjust the traffic at these high-quality
service providers. Note that the selling prices for answers and referral from the expert
agent may decrease if no agents are willing to pay the prices.

Incentive Mechanisms for Peer-to-Peer Systems 87

5 Related Work

Golle et al. first use a game theoretic approach to analyze the free riding problem in
peer-to-peer file sharing systems [4]. They analyze equilibria of user strategies under
several micropayment mechanisms. Our micropayment protocol with fixed pricing is
similar to theirs. More recently, Ramaswamy and Liu use utility functions to measure
the usefulness of peers, e.g., the number of files, the total size of the data, and the
popularity of the files, and describe a utility based scheme to control free riding in
peer-to-peer systems [9]. Both of the above approaches study the free riding problem in
P2P file sharing systems, while we focus on the referral systems, in which the prices of
services can be either fixed or dynamic.

Shneidman and Parkes discuss the notions of rationality and self-interest in P2P
systems [13]. Similar ideas can also be found in Distributed Algorithmic Mechanism
Design (DAMD) [3]. Shneidman and Parkes highlight some open problems in DAMD
and specially P2P systems, e.g., computational complexity of mechanisms and effects
of mechanism design on network topology formation.

Pricing or micropayment is only one incentive mechanism. Krishnan et al. propose
other mechanisms to reduce the problem of free riding in P2P systems [7]. They develop
some non-priced incentives to encourage efficient behavior in P2P users. Some examples
include delay time (e.g., users who share more content with the system have higher
priority), network membership (e.g., removing non-sharing members from the systems),
or peer ratings of content providers. However, empirical analysis is needed to measure
the impact of these mechanisms.

6 Conclusion

This paper examines the problem of free riding in agent-based peer-to-peer systems,
especially referral systems. We introduce two classes of micropayment protocols and
analyze the strategies of agents under these protocols. Our paper only provides a prelimi-
nary study of mechanism design in referral systems. For example, we simply assume that
the qualities of services are consistent for each agent. Also, we don’t consider the topol-
ogy of referral graphs and its effects on dynamic pricing. In future work, we plan to focus
on these problems and develop more efficient and incentive compatible mechanisms for
referral systems.

Acknowledgements. This research was supported by the National Science Foundation
under grant ITR-0081742. We are indebted to the anonymous reviewers for their helpful
comments.

References

1. E. Adar and B. Huberman. Free riding on Gnutella. First Monday, 5(10), 2000.
2. K. Decker, K. Sycara, and M. Williamson. Middle-agents for the Internet. In Proceedings of

the International Joint Conference on Artificial Intelligence (IJCAI), pages 578–583, 1997.

88 B. Yu and M.P. Singh

3. J. Feigenbaum and S. Shenker. Distributed algorithmic mechanism design: Recent results and
future directions. In Proceedings of the Sixth International Workshop on Discrete Algorithms
and Methods for Mobile Computing and Communications, pages 1–13, 2002.

4. P. Golle, K. Leyton-Brown, I. Mironov, and M. Lillibridge. Incentives for sharing in peer-to-
peer networks. In Proceedings of the Second InternationalWorkshop on Electronic Commerce,
pages 75–87, 2001.

5. M. N. Huhns, U. Mukhopadhyay, L. M. Stephens, and R. D. Bonnell. DAI for document
retrieval: The MINDS project. In M. N. Huhns, editor, Distributed Artificial Intelligence,
pages 249–283. Pitman/Morgan Kaufmann, London, 1987.

6. H. Kautz, B. Selman, and M. Shah. The hidden Web. AI Magazine, 18(2):27–36, 1997.
7. R. Krishnan, M. D. Smith, and R. Telang. The economics of peer-to-peer networks, 2002.

working paper, Carnegie Mellon University.
8. M. J. Osborne and A. Rubinstein. A Course in Game Theory. MIT Press, Cambridge, MA,

1994.
9. L. Ramaswamy and L. Liu. Free riding: a new challenge for peer-to-peer file sharing systems.

In Proceedings of Hawaii International Conference on Systems Science 36, 2003.
10. S. Ratnasamy, P. Francis, M. Handley, R. Karp, and S. Shenker. A scalable content-addressable

network. In Proceedings of ACM SIGCOMM, pages 161–172, 2001.
11. A. Rowstron and P. Druschel. Pastry: Scalable, distributed object location and routing for

large-scale peer-to-peer systems. In Proceedings of the 18nd IFIP/ACM International Con-
ference on Distributed Systems Platforms, pages 329–350, 2001.

12. G. Salton and M. McGill. An Introduction to Modern Information Retrieval. McGraw-Hill,
New York, 1983.

13. J. Shneidman and D. Parkes. Rationality and self-interest in peer-to-peer networks. In
Proceedings of Second International Workshop on Peer-to-Peer Systems, 2003.

14. I. Stoica, R. Morris, D. Karger, M. F. Kaashoek, and H. Balakrishnan. Chord: A scalable
peer-to-peer lookup service for internet applications. In Proceedings of ACM SIGCOMM,
pages 149–160, 2001.

15. D. J. Watts and S. H. Strogatz. Collective dynamics of ‘small-world’ networks. Nature,
393:440–442, June 1998.

16. B. Yu and M. P. Singh. An evidential model of distributed reputation management. In
Proceedings of First International Joint Conference on Autonomous Agents and Multiagent
Systems, pages 294–301, 2002.

17. B. Yu and M. P. Singh. Searching social networks. In Proceedings of Second International
Joint Conference on Autonomous Agents and Multiagent Systems, pages 65–72, 2003.

18. B. Yu, M. Venkatraman, and M. P. Singh. An adaptive social network for information access:
Theoretical and experimental results. Applied Artificial Intelligence, 17(1):21–38, 2003.

A Taxonomy of Incentive Patterns
The Design Space of Incentives for Cooperation�

Philipp Obreiter and Jens Nimis

Institute for Program Structures and Data Organization
Universität Karlsruhe (TH)

D-76128 Karlsruhe, Germany
{obreiter,nimis}@ipd.uni-karlsruhe.de

Abstract. Peer-to-peer systems, multi-agent systems, and ad hoc net-
works aim at exploiting synergies that result from cooperation. Yet, these
systems are composed of autonomous entities that are free to decide
whether to cooperate or not. Hence, incentives are indispensable to in-
duce cooperation between autonomous entities. In this paper, we intro-
duce incentive patterns as a means of systematically conceiving incentive
schemes with respect to the specifics of the application environment.
Based on economics, we derive several incentive patterns and discuss
them with respect to a set of general characteristics. Consequently, we
propose a taxonomy that classifies the derived incentive patterns.

1 Introduction

Peer-to-peer (P2P) systems and multi-agent systems (MAS) share many of their
central concepts and problems, e.g. autonomy and coordination of the partici-
pants. One common key concept is the exploitation of synergy, i.e. the combi-
nation of capabilities local to individual participants in order to emerge system
behaviors that are more powerful than the sum of the individual capabilities. P2P
sharing systems like Gnutella, Napster, and others constitute huge distributed
databases, while their participants have to provide disk space and bandwidth
for only a few data sets. For MAS, consider the numerous supply chain manage-
ment (SCM) applications. Based on their local knowledge, supplier and recipient
agents from different organizations try to optimize the flow of material along a
supply chain, possibly rescheduling their local fabrication plans.

The concept of synergy also plays a crucial role for ad hoc networks. There,
the compensation for the missing network infrastructure must evolve from the
end users’ devices. They take over infrastructural tasks in order to ensure the
network’s effectiveness. Therefore, cooperation among the end users’ devices
becomes necessary. However, the absence of infrastructure implicates the lack of

� The work done for this paper is partially sponsored by the German Research Com-
munity (DFG) in the context of the priority program (SPP) no. 1083 and no. 1140.
We thank Birgitta König-Ries and Sokshee Goh for their comments on this paper.

G. Moro, C. Sartori, and M.P. Singh (Eds.): AP2PC 2003, LNAI 2872, pp. 89–100, 2004.
c© Springer-Verlag Berlin Heidelberg 2004

90 P. Obreiter and J. Nimis

provider
A

service

remuneration

consumer
B

Fig. 1. The terminology of elementary cooperation

any centralized authority that enforces cooperative behavior of the participating
devices.

In the context of our work, the common characteristics of P2P systems, MAS,
and ad hoc networks are as follows: They all build upon distributed systems of
autonomous entities which need cooperation in order to achieve their local and
global goals which leads to consumption of their possibly limited resources.

A precise analysis of cooperation among participants reveals the roles that
an entity may assume. In [1], it is pointed out that cooperation may be decom-
posed into a set of elementary cooperations. As the elementary constituent of
cooperation, an entity A (provider) provides a service that is beneficial for an
entity B (consumer)1. The consumer has to remunerate the provider in order to
compensate for its resource consumption. Consequently, this incentive may lead
to further provision of services. In the following, cooperative behavior is treated
on the elementary provider-consumer level. Figure 1 interrelates the proposed
terms.

Incentive schemes play a central role for cooperation in open distributed sys-
tems of autonomous entities. Yet, up to now, they are not subject to the system
design processes. The choice and further development of incentive schemes is
contingent on several system specifics. At the same time, it opens up a new de-
sign space. In this paper, we will give a pattern based approach to exploit this
new design space.

The history of economics [2] has known several incentive patterns for coop-
eration, i.e. the provision of goods and services. Therefore, as a guideline for
identifying and classifying incentive patterns, it seems to be a promising idea
to build a taxonomy based on such economic incentive patterns [3]. This taxon-
omy should not be based on chronology, but on the characteristics that make a
pattern usable or unusable in certain situations.

Outline. The remainder of this paper is organized as follows. Section 2 introduces
the notion of incentive patterns and suggests a set of general characteristics.
Consequently, we introduce incentive patterns that are trust based (Section 3)
and trade based (Section 4). In Section 5, we propose a taxonomy of incentive
patterns and compare them to the aforementioned characteristics. We review
related approaches in Section 6. Finally, we conclude the paper in Section 7.

An extended version of this paper is available as technical report [4].
1 In our referenced work [1], which has its roots in the area of ad hoc networks, provider

and consumer are called agent entity and principal entity. For sake of clarity this
has been changed in this context.

A Taxonomy of Incentive Patterns 91

2 Incentives Patterns

Existing incentive schemes apply various patterns of stimulating the provision
of services. In this section, we introduce the notion of such incentive patterns
and point out the need for a thorough analysis of them. Therefore, we suggest a
set of general characteristics that are required for the classification of incentive
patterns.

An incentive pattern is a pattern of stimulating cooperation. It comprises
a set of abstract mechanisms that incentive schemes may apply. If the charac-
teristics of the respective incentive patterns are known, incentive schemes may
be conceived more systematically by taking into account the specifics of the
application environment and matching them to appropriate incentive patterns.
Such systematic design of incentives for cooperation goes beyond the abstract
matching of [1], since it considers the specifics of the respective protocols. In
this paper, we enlarge the design space of incentive schemes by systematically
identifying and classifying further incentive patterns.

General Characteristics. We propose a set of general characteristics that cap-
tures the specifics and differences of incentive patterns2.

– Roles: In general, the incentive pattern stimulates an entity to act as
provider for a consumer. Then, the roles of the cooperating entities are
asymmetric. However, an incentive pattern may impose symmetric roles by
stipulating that the consumer has to provide a service in return at the same
time.

– Remuneration: In most incentive patterns, the consumer remunerates the
provider. Depending on the incentive pattern, remuneration assumes a spe-
cific form that is called remuneration type [1]. Every remunerating incentive
pattern introduces its own type. For instance, reputation and checks are both
remuneration types. Remuneration types differ with respect to their inherent
granularity. The remuneration’s granularity is implied by the granularity of
the respective remuneration type. Hence, coarse remuneration types impose
constraints on remuneration assessment. The amount of the remuneration is
assessed by the consumer and/or the provider. The remuneration is not nec-
essarily obtained and stored by the provider. The consumer may also store
a remuneration that consists in remembering prior services of the provider.
For some remuneration types, remuneration may be transferred to third par-
ties. A remunerating incentive pattern should enforce the reciprocation of
the provider. There are different degrees of incertitude for the provider with
regard to the probability of such reciprocation.

– Trust: Depending on the incentive pattern, trust either constitutes an in-
centive for cooperation or it is a prerequisite for remuneration mechanisms.

2 Due to space limitations, we forego discussion of uncooperative behavior and imple-
mentability in ad hoc networks. These characteristics are discussed in [4]. Further
characteristics are supposable regarding the Quality-of-Service, e.g., fault-tolerance
and performance of the incentive patterns.

92 P. Obreiter and J. Nimis

Regardless of the incentive pattern, the consumer has to ensure that the
provider executes the respective service. Therefore, in this paper, we focus
on trust that is necessary for assuring the validity of the remuneration. The
provider has to be convinced that its remuneration is valid and worthwhile.
Depending on the incentive pattern, the provider must trust the consumer or
dedicated entities. Trust mechanisms may necessitate to disclose the identity
of the consumer or provider.

– Scalability: In this context, scalability refers to the number of entities that
apply the incentive pattern. In general, incentive patterns do not scale well
with the number of trusted entities.

3 Trust Based Incentive Patterns

At first, we take a closer look on trust which is a straightforward incentive for co-
operation. In trust based incentive patterns, the provider executes the demanded
service, if it trusts the consumer. Therefore, the consumer does not explicitly re-
munerate the provider. The provider’s trust in the consumer is twofold: The
service execution is beneficial for the provider either because it trusts in shar-
ing the same goals with the consumer or because it believes in increasing other
entities’ cooperativeness.

3.1 The Collective Pattern

Incentive. A collective is a set of entities with mutual trust and unconditional co-
operation. The incentive for cooperation in a collective stems from being member
of the same collective.

Properties. The provider does not need any remuneration, but it has to ensure
that the consumer is part of the same collective. Being a set of entities, a collec-
tive is the generalization of an entity. Hence, the remaining incentive patterns
may be combined with the collective pattern by applying the notion of provider
and consumer to collectives.

3.2 The Community Pattern

Incentive. A community is a group of entities whose incentives for coopera-
tion are based on the trust gained by providing services to other entities of the
community. Good reputation is required in order to consume services of other
entities.

Properties. The consumer remunerates by increasing its trust in the provider.
In this regard, remuneration assessment is performed by the consumer since it
consists of re-assessing trust in the provider. Other entities may also increase
their trust in the provider if they are able to observe3 the elementary cooper-
ation. The provider has no guarantees with regard to the effectiveness of the
3 In [1,4], such observation is called sniffing.

A Taxonomy of Incentive Patterns 93

reciprocation since it cannot intervene in the trust assessment of the consumer
and the observing entities.

An entity’s trustworthiness is only known by prior cooperation partners or, in
case of observation, by other entities in the proximity. Therefore, good reputation
only pays off in communities with stable or localized cooperation patterns [5].
As a result, a community scales badly with respect to the number of its entities.
In order to further enforce reciprocation, local trust assessments are generally
disseminated throughout the community. Then, entities get known the reputa-
tion of an arbitrary entity. However, such disseminations require mechanisms
to counter defamations and unjustified praising. In addition, entities that have
a poor reputation might still be able to alter their identities and, thus, avert
retaliation [6].

In communities, trust is tightly coupled with the remuneration type, i.e.,
reputation. Other incentive patterns may employ mechanisms of communities
for their trust management.

4 Trade Based Incentive Patterns

On contrary to trust based incentive patterns, explicitness of remuneration might
be desirable. Such explicit remuneration consists of a service in return. Incentive
patterns that are based on this principle are depicted as trade based incentive
patterns. We differentiate between two types of trade. The consumer might ex-
ecute the service in return immediately during or after the provider’s service
provision. Alternatively, the consumer might promise the service in return.

4.1 Immediate Service in Return – The Barter Trade Pattern

The assumption of mutual trust is too restrictive for highly volatile networks
that restrict inter-entity cooperation to one or two elementary cooperations. In
such a case, an incentive pattern cannot assume any future cooperation in order
to stimulate cooperation. A straightforward solution to this problem consists
of abandoning the asymmetry of the provider-consumer pair. This is done by
superposing two elementary cooperations so that each entity is provider and
consumer at the same time.

Incentive. Barter trade is defined as the exchange of services. Hence, the con-
sumer remunerates the provider by simultaneously providing a service in return.

Properties. The bad scalability of communities ensues from the temporal uncou-
pling of the initial service and the service in return. Therefore, the barter trade
incentive pattern insists on an immediate service in return by the consumer.
Hence, reciprocation is effectively enforced. In barter trade, the two partici-
pating entities may remain anonymous. Trust is only required if the service in
return is not executed simultaneously. Consequently, the barter trade pattern
scales better than trust based incentive patterns.

94 P. Obreiter and J. Nimis

The assessment of the remuneration is bound to the granularity of the ser-
vice in return which may be too coarse. The negotiation and assessment of the
remuneration is complex because two services are assessed at the same time. In
any case, an entity only acts as provider if it is interested in a service that the
consumer offers.

4.2 Promised Service in Return – Bond Based Incentive Patterns

In general, barter’s superposing of two elementary cooperations is infeasible since
the provider normally does not need an immediate service in return. Yet, given
the fact that the provider is likely to act as consumer in a subsequent elementary
cooperation, it might be stimulated by promising a service in return in the future.
Bond based incentive patterns stipulate that the consumer hands over a bond
that promises such a service in return to the provider.

In the following, we introduce key terms the facilitate the discussion of bond
based incentive patterns. The issuer of a bond is the entity that certifies the
bond’s promise. The debtor of a bond is the entity that, according to the promise,
will execute the service in return. Entities that are specialized in the assumption
of the debtor’s role are called dedicated debtors. The consumer is not necessarily
the issuer of the bond since it might have acquired the bond in the course
of another elementary cooperation. In this regard, promised services in return
may be transferred. A bond is a bearer bond if the services that it promises are
arbitrarily transferrable. In the remainder of this section, we propose a generic
discussion of bonds and, subsequently, suggest and examine specific bond types.

Incentive. The consumer remunerates the provider by handing over a bond. In
this regard, an entity provides a service in order to be promised a service in
return.

Properties. On contrary to barter trade, bonds uncouple the initial service and
the service in return. Furthermore, the provider is in possession of its remuner-
ation, as opposed to the community pattern.

The bond’s promise is not bound to the granularity of the service in return
since the promise may specify a fraction of services. This makes sense for entities
that accumulate several bonds before honoring them at the debtor. As for the re-
muneration assessment, the provider demands an extra charge for the deferment
and the incertitude regarding the service in return.

The transferability of bearer bonds is desirable since the provider may re-
transfer the bond for remuneration in subsequent cooperations. However, trans-
ferability demands for mechanisms that prevent or detect double spending of
bonds [7]. Otherwise, the reciprocation of the bond’s bearer cannot be enforced.

In general, the debtor of a bond has to disclose its identity in order to prove
its trustworthiness. However, the debtor is eager to alter its identity in order to
escape from having to provide the service in return.

A Taxonomy of Incentive Patterns 95

Table 1. Bond types

checkbill
issuer is
not debtor

note
issuer is
debtor

dedicated
debtor

debtor is
any party

Bond

checkbill
issuer is
not debtor

note
issuer is
debtor

dedicated
debtor

debtor is
any party

Bond

bearer
check

bearer
bill

issuer is
not debtor

banknote
bearer
note

issuer is
debtor

dedicated
debtor

debtor is
any party

Bearer
bond

bearer
check

bearer
bill

issuer is
not debtor

banknote
bearer
note

issuer is
debtor

dedicated
debtor

debtor is
any party

Bearer
bond

Specific Bond Types. In the following, we propose specific bond types and
discuss their characteristics. The bond types are illustrated in Figure 1. Each of
them defines a bond based incentive pattern4. The different types of bonds are
discernable with regard to the following five criteria5:

1. Transferability6: May the bond be transferred to another entity?
2. Issuer vs. debtor: Does the issuer embody the role of the debtor?
3. Dedicated entities: Is the debtor a dedicated debtor?
4. Delivery7: Is the bond handed over to the provider or to the debtor?
5. Time of service in return8: When is the service in return provided?

Notes and bearer notes. A (bearer) note is a (bearer) bond that is issued by its
debtor. This means that the issuer has to disclose its identity in order to prove
its trustworthiness. Since every entity may issue a note, this demands for keeping
track of the reputation of every entity. Therefore, the (bearer) note pattern does
not scale well.

If disseminations are prohibited, the community pattern is similar to the note
pattern. Their dissimilarities accrue from the explicitness of remuneration.

Bills and bearer bills. A (bearer) bill is a (bearer) bond the issuer and debtor of
which differ. Upon receipt of a bill, the provider has to ensure that the debtor
exists and is willing to provide the promised service in return on behalf of the
bill’s issuer.

An entity only accepts a bill if the debtor is trusted to provide the service in
return or to retaliate on the issuer. Hence, a bill requires a procuration of the
4 The labelling of bonds based incentive patterns is slightly different than in [4]. There,

the bearer check pattern is called banking pattern.
5 Due to space limitations, we will focus on the first three criteria. A more detailed

discussion of the criteria is found in our subsequent work [3].
6 For clarity reasons, we only consider the two extremes of transferability, i.e., pro-

hibited transferability (bonds) and unrestricted transferability (bearer bonds). In
practice, the transferability of bonds is restricted to a specific number of handovers.
An important special case are bonds that may only be transferred once.

7 This criterion is identified in [8]. Delivery to the provider and to the debtor is called
direct payment and indirect payment respectively.

8 The service in return is either provided on presentation of the bond or at a pre-agreed
time interval or point of time.

96 P. Obreiter and J. Nimis

debtor. There are two types of such procuration. On the one hand, an unlimited
procuration may be appropriate if the debtor is able to retaliate on the issuer if
the bill should not have been issued. On the other hand, the scope of a limited
procuration is bound to a specific bill. A bearer note could represent such limited
procuration.

Checks and bearer checks. A (bearer) check is a (bearer) bill the debtor of which
is a dedicated debtor. Checks are based on the metaphor of banking. Every entity
(account holder) possesses an account that is managed by a dedicated debtor
(the entity’s bank). The account’s balance is a scalar that specifies how many
reference services the bank is willing to execute on behalf of the account holder.
The consumer remunerates the provider by issuing a check the debtor of which
is its bank. The check bearer presents the check to its bank so that its account
is credited. If the check bearer’s bank differs from the check issuer’s one, an
inter-bank transaction is required.

In general, each bank is able to retaliate upon an entity for having issued
a check without its consent9. Therefore, the reciprocation of the provider is
enforced more effectively. In addition, only the banks have to disclose their iden-
tity and to be trustworthy. Consequently, the (bearer) check pattern scales better
than the (bearer) bill pattern. Its scale is only bound to the accessibility of banks
and the scale of inter-bank transactions.

Banknotes. A banknote is a bearer note10 that is issued by a dedicated debtor
(bank). Entities prefer banknotes to bearer notes since such a bank is generally
more reachable and trustworthy than common entities. This yields better scal-
ability of the banknote pattern if compared with the (bearer) note pattern. In
addition, the bearer of the banknote might not have to disclose its identity11.
However, the provider has to trust in the banknotes’ genuineness. Therefore,
either banknotes are unforgeable or, in case of infeasibility of the unforgeability
assumption, the consumer has to be trusted, which hinders its anonymity.

5 Taxonomy and Characteristics of Incentive Patterns

In the last sections, we identified several incentive patterns in order to capture
and enlarge the design space of incentive schemes. Yet, the ultimate goal of in-
centive patterns is to systematically conceive incentive schemes by taking into
account the specifics of the application environment and matching them to ap-
propriate incentive patterns. Therefore, in this section, we classify the proposed
9 Such consent is not required to be explicit since it may be expressed in a unlimited

procuration.
10 It makes sense to base the definition of banknotes on bearer notes. Otherwise, they

can only be used in cooperations with dedicated entities which contradicts the com-
mon notion of banknotes in economics.

11 Nevertheless, most approaches that cope with double spending demand for the dis-
closure of the bearer’s identity.

A Taxonomy of Incentive Patterns 97

trade based patternstrust based patterns

provider stimulated
by trust

provider stimulated by
service in return

incentive patterns

community patterncollective pattern

static dynamic

bond based
incentive patterns

immediate promised

barter trade pattern

Fig. 2. Taxonomy of incentive patterns

incentive patterns and summarize their characteristics in order to clarify their
interrelationship and applicability.

Taxonomy. In Figure 2, a taxonomy of the proposed economic incentive patterns
is given. In trust based incentive patterns, the provider is stimulated by the trust
it has in the consumer. Trust either accrues from membership (collective pattern)
or it is subject to entities’ behavior and, thus, adapts dynamically (community
pattern). On contrary, in trade based incentive patterns, the provider is stim-
ulated by a service in return that is either executed immediately (barter trade
pattern) or promised (bond based incentive patterns).

Characteristics. The main properties of the proposed incentive patterns are
summarized in Table 2. The collective and community pattern seem to be too
restrictive with regard to their scalability and fuzzy accounting. However, they
are easy to implement and can be combined with other patterns. On the one
hand, collectives generalize the notion of entities. On the other hand, commu-
nities merge remuneration and trust management. Therefore, their mechanisms
provide a sound basis for the assessment of trustworthiness in the other incentive
patterns. Barter trade exhibits several characteristics that are desirable, i.e.:

– Anonymity: The participating entities do not have to disclose their identity.
– Enforcement: Since the service in return is provided immediately, the re-

muneration is effective even if the participating entities are disconnected
immediately after their cooperation.

– Scalability: The incentive pattern may be effectively applied by a large num-
ber of entities.

– Localization: Cooperation and remuneration do not require interaction with
dedicated entities. For example, in ad hoc networks, this property is not only
desirable, but crucial.

However, in most application domains, it is infeasible to determine an ade-
quate service in return and provide it simultaneously. Therefore, the remaining
incentive patterns compensate for these disadvantages by introducing various
bonds. However, the desirable characteristics of barter trade then become un-
sustainable. Enforcement calls for a dedicated entity that is often accessible and

98 P. Obreiter and J. Nimis

Table 2. Characteristics of the incentive patterns

fraction of serviceservicearbitraryGranularity

consumer/provider 2cons./
provider

consumerAssessment

(cons./)
bank

cons./
bank

cons./
debtor

cons.noneconsumerTrusted

T
rust

+o(-)-+-Anonymity
++-+-- -Scalability

++5-o+-

none

Enforcement

R
em

uneration

+-/(+)-/(+)

(B
earer) B

ill Pattern

Bond Based Incentive PatternsB
arter T

rade Pattern

B
anknote Pattern

(B
earer) C

heck
Pattern

(B
earer) N

ote Pattern

C
om

m
unity Pattern

C
ollective Pattern

provider/bearernoneconsumerStorage Site
-/(+)o4+3Transferability

bond1service in
return

reputationType

asymmetricsymmetricasymmetricRoles

Trade Based Incentive Patterns
Trust Based

Incentive PatternsIncentive
Patterns

General
Characteristics

fraction of serviceservicearbitraryGranularity

consumer/provider 2cons./
provider

consumerAssessment

(cons./)
bank

cons./
bank

cons./
debtor

cons.noneconsumerTrusted

T
rust

+o(-)-+-Anonymity
++-+-- -Scalability

++5-o+-

none

Enforcement

R
em

uneration

+-/(+)-/(+)

(B
earer) B

ill Pattern

Bond Based Incentive PatternsB
arter T

rade Pattern

B
anknote Pattern

(B
earer) C

heck
Pattern

(B
earer) N

ote Pattern

C
om

m
unity Pattern

C
ollective Pattern

provider/bearernoneconsumerStorage Site
-/(+)o4+3Transferability

bond1service in
return

reputationType

asymmetricsymmetricasymmetricRoles

Trade Based Incentive Patterns
Trust Based

Incentive PatternsIncentive
Patterns

General
Characteristics

1 The specific bond type of the incentive pattern corresponds with the pattern’s label.
2 In addition, there is an extra charge for the ability to defer consumption and for the
risk of validity. This extra charge is determined by the provider.
3 Requires disseminations.
4 Demands for re-trading actions.
5 Requires that banks are able to retaliate upon an entity for having issued a bill
without their consent.

provides the promised service in return. Furthermore, trust intensive roles are
delegated to such a dedicated entity, in order to maintain anonymity of the
consumer and provider. By doing so, bearer notes and bills are specialized to
banknotes and checks. On the downside, the introduction of a dedicated entity
contradicts the localization criterion. Conceptually, the transferability of checks
and banknotes solves this problem. Yet, the ensuing opportunity for double
spending of bonds hampers the enforcement of reciprocation.

6 Related Work and Contribution

Incentives are applied whenever the utility of autonomous entities has to be in-
fluenced for effectiveness or efficiency reasons. In economics, incentives assume

A Taxonomy of Incentive Patterns 99

a predominant role, hence their design has been thoroughly analyzed [9]. How-
ever, due to the ubiquity of the banknotes pattern in economics, existing work is
not focussed on the choice of appropriate incentive patterns and, thus, abstracts
from them. For MAS, there are several approaches that assume the economic
perspective in order to apply incentives. All of them presume the availability of
a robust payment scheme, which introduces a specific form of remuneration and
generally requires a central authority. Thus, the approaches’ design of incentive
schemes is not contingent upon specific incentive patterns. A generic study of
conceiving incentive schemes based on the economic public good theory is found
in [10]. For P2P systems, file sharing incentive schemes have been proposed [11,
12]. Incentive Schemes for efficient resource allocation are conceived in agoric
computing [13,14]. The transactional exchange of service and remuneration is
analyzed in [15] regardless of the respective incentive pattern.

On the other hand, several related approaches restrain to the application
and implementation of one specific incentive pattern. For P2P systems, there
is ongoing research on distributed reputation systems [16] which are needed for
the implementation of the community pattern. Mojo Nation [17] applies the
barter trade pattern and the check pattern. The implementation of checks and
banknotes is discussed in [7]. According to the classification of incentive schemes
in [1], the predominant patterns for ad hoc networks are the collective pattern,
the community pattern, and the check pattern.

To our knowledge, incentive patterns have not yet been compiled and dis-
cussed with regard to their characteristics and applicability to a specific domain.
Therefore, this paper closes the gap between economic approaches that conceive
incentives by determining the appropriate amount of remunerations and, on the
other hand, approaches that examine how specific incentive patterns may be
implemented.

7 Conclusion

P2P systems, MAS, and ad hoc networks are composed of autonomous entities
that are free to decide whether to cooperate or not. Hence, incentives are in-
dispensable for cooperation between them. Therefore, we introduced incentive
patterns as a means of systematically conceiving incentive schemes with respect
to the specifics of the application environment. We suggested a set of general
characteristics that are required for the classification of such incentive patterns.
At first, we introduced trust based incentive patterns that trust based incentive
patterns assume a certain degree of stability. This assumption is not made by
the barter trade pattern that enforces an immediate service in return. Since such
an immediate service in return is often infeasible, it might be promised in the
form of a bond. Consequently, we identified and classified several bond based
incentive patterns. We captured the interrelationship of incentive patterns by
proposing a taxonomy and summarizing their characteristics.

In the future, we plan to thoroughly analyze the applicability of incentive
patterns that are not used in any existing incentive scheme yet. In addition,

100 P. Obreiter and J. Nimis

it seems promising to consider composition of incentives patterns in order to
combine their strengths.

References

1. Obreiter, P., König-Ries, B., Klein, M.: Stimulating cooperative behavior of au-
tonomous devices - an analysis of requirements and existing approaches. In: Second
International Workshop on Wireless Information Systems (WIS2003). (2003) 71–82

2. Davies, R.: A History of Money from Ancient Times to the Present Day. 3rd edn.
University of Wales Press (2002)

3. Anders, R., Obreiter, P.: Economic incentive patterns and their application to
ad hoc networks. Technical Report 2003-17, Universität Karlsruhe, Faculty of
Informatics (2003) (to appear).

4. Obreiter, P., Nimis, J.: A taxonomy of incentive patterns - the design space of
incentives for cooperation. Technical Report 2003-9, Universität Karlsruhe, Faculty
of Informatics (2003)

5. Obreiter, P., Klein, M.: Vertical integration of incentives for cooperation - inter-
layer collaboration as a prerequisite for effectively stimulating cooperation in ad
hoc networks. In: Second Mediterranean Workshop on Ad-Hoc Networks (MED-
HOC NET 2003), Mahdia, Tunisia (2003)

6. Dellarocas, C.: The digitization of word-of-mouth: Promise and challenges of online
feedback mechanisms. Management Science (forthcoming). (2003)

7. Asokan, N., Janson, P.A., Steiner, M., Waidner, M.: The state of the art in elec-
tronic payment systems. IEEE Computer 30 (1997) 28–35

8. Asokan, N.: Fairness in Electronic Commerce. PhD thesis, University of Waterloo
(1998)

9. Bamberg, G., Spremann, K.: Agency Theory, Information, and Incentives. Springer
(1989)

10. Shoham, Y., Tanaka, K.: A dynamic theory of incentives in multi agent systems. In:
Proceedings of Fifteenth International Joint Conference on Arti Cial Intelligence
(IJCAI) ’97, Volume. (1997) 626–631

11. Golle, P., Leyton-Brown, K., Mironov, I., Lillibridge, M.: Incentives for sharing in
peer-to-peer networks. Lecture Notes in Computer Science 2232 (2001) 75–86

12. Courcoubetis, C., Antoniadis, P.: Market models for P2P content distribution. In:
First International Workshop on Agents and Peer-To-Peer Computing (AP2PC).
(2002)

13. Miller, M.S., Drexler, K.E.: Comparative Ecology: A Computational Perspective.
In: The Ecology of Computation. B. Huberman (ed.) (1988)

14. Liao, R.F., Wouhaybi, R.H., Campbell, A.: Incentive engineering in wireless LAN
based access networks. In: Proc. 10th International Conference on Network Pro-
tocols (ICNP), Paris, France (2002)

15. Despotovic, Z., Aberer, K.: Trust-aware delivery of composite goods. In: First
International Workshop on Agents and Peer-To-Peer Computing (AP2PC). (2002)

16. Dingledine, R., Freedman, M., Molnar, D.: 16. Accountability. In: Peer-to-Peer:
Harnessing The Benefits of a Disruptive Technology. O’Reilly Publishers (2001)
271–340

17. Mojo Nation: http://www.mojonation.net/MojoNation.html (2003)

P2P MetaData Search Layers

Sam Joseph

Strategic Software Division
Graduate School of Information Science and Technnology

University of Tokyo 7-3-1, Hongo, Bunkyo-ku
Tokyo 113-8656 Japan

sam@mtl.t.u-tokyo.ac.jp, sam@neurogrid.com

Abstract. Distributed Hashtables (DHTs) provide a scalable method
of associating file-hashes with a particular location in a distributed net-
work environment. Modifying DHTs directly to support meta-data is
difficult, and meta-data search systems such as flooding tend to scale
poorly. However, a number of more scalable distributed meta-data search
systems have recently been developed that could be deployed in tandem
with DHTs, and several are discussed here along with some novel sim-
ulation results that concern the scalability and resource limitations of a
meta-data search layer that employs semantic routing. Semantic routing
is a method of pruning a flooding search such that queries are preferen-
tially forwarded to nodes that can answer those queries. Previous simula-
tions [1] showed that under certain circumstances semantic routing leads
to a reduction in search path length. This paper presents further simu-
lation results indicating that the scalability of this effect is a function of
the query distribution of individual user search activity.

1 Introduction

Given a distributed network environment we can break down the process of
obtaining a file or document into three distinct stages:

1. WHAT: Identify which file you want from some meta-data criteria
2. WHERE: Work out where it is (potentially multiple locations/pieces)
3. HOW: Download it (from one or multiple locations)

These stages are merged in some systems, and arguably one could add a stage
0 in which the user specified what kind of meta-data schema they would like
to be able to search over [2]. The Freenet system [3] merges the WHERE and
HOW stages and relies upon a separate search layer to implement the WHAT
stage. Merging stages may be necessary in some cases, however to the extent
that they are separable they can be implemented by entirely different systems.
For example, one might use FASD [4] to identify a file from keyword meta-data;
use Chord [5] to work out the location of the file itself, and then BitTorrent [6] to
actually download it. Distributed Hashtables such as Chord and CAN [7], with
their bounds on path-length and/or connectivity as network size increases, seem

G. Moro, C. Sartori, and M.P. Singh (Eds.): AP2PC 2003, LNAI 2872, pp. 101–112, 2004.
c© Springer-Verlag Berlin Heidelberg 2004

102 S. Joseph

well suited to providing the functionality of the WHERE stage as opposed to
the WHAT stage. Storing file meta-data directly in DHTs, such as by splitting
up filenames into n-grams [8], generates routing hotspots where certain nodes
end up with heavy routing traffic because they are responsible for a particularly
popular meta-data field or n-gram chunk [9].

Among the variety of recent developments in meta-data search layer tech-
niques targeted at the WHAT stage, is ”Semantic Routing”; a method of prun-
ing a flooding search such that queries are preferentially forwarded to nodes
that can answer those queries. Existing work [1] has shown that under certain
circumstances semantic routing leads to a reduction in search path length. This
paper describes some new semantic routing simulations and considers results in-
dicating that the scalability of this effect is a function of the query distribution
of individual user search activity.

The rest of the paper is structured as follows: in section 2 we review some
of the recent developments in scalable meta-data search layers that could be de-
ployed in tandem with DHTs. Section 3 describes a semantic routing meta-data
search layer simulation, and includes some analysis of the search query distri-
butions that will be used to make some scalability predictions. In section 4 we
look at the simulation results, comparing them with the predictions of section 3
and discuss the scalability implications. Finally in section 5 we discuss the issues
arising from trying to develop scalable meta-data search layers, and simulation
of p2p systems in general.

2 Related Work

As mentioned in the introduction Freenet [3] merges the WHERE and HOW
stages and relies on other systems to implement the WHAT stage. Freenet for-
wards queries according to beliefs about the contents of other nodes and considers
file similarity in terms of closeness in a ”key-space” generated by a cryptographic
hash. A file’s key is used to retrieve/insert files from/into particular locations.
Combined with aggressive caching activity the arrangement of files ends up re-
flecting that of the key-space and the relative demand for different documents.
Gnutella [10] relies on individual users sharing files stored locally, using broad-
cast search to identify file locations from partial search of plain text filenames,
and thus merges the WHAT and WHERE stages. The HOW stage is farmed out
to HTTP. Other systems have emerged that attempt to deal with the issues of
distributed file storage, such as MojoNation [11] (now Mnet), which provides all
three stages in one package.

Recently a number of systems have been developed that try to provide so-
phisticated meta-data search. One possible P2P meta-data approach is to try
and use Chord to store keyword-document relations. Kronfol [4] suggests that
under this scheme popular query terms would drive excessive traffic to certain
nodes. As an alternative Kronfol describes and simulates FASD, which adds key-
word searching to the Freenet system by inserting meta-data keys that include
the TFIDF (Term Frequency Inverse Document Frequency [12]) rankings of key-

P2P MetaData Search Layers 103

words in Freenet documents, as well as the Freenet document key. FASD employs
a cosine correlation to determine document-query closeness and Freenet routing
techniques such that nodes start to take responsibility for similar meta-data
keys, distributing meta-data information throughout the network. Babaoglu et
al. [13] propose a not dissimilar scheme, although their routing procedure works
on hashes of individual keywords to distribute the load, as opposed to TFIDF
vectors. Their scheme, an example application of the Anthill framework com-
bines the WHAT and WHERE stages, and like Gnutella farms out the HOW
stage to HTTP.

NeuroGrid [1] maintains routing tables at each node that associate other
nodes with query keywords, and routing tables are updated on the basis of
user feedback. Each node forwards incoming queries to a subset of the most
relevant nodes. This process is called semantic routing and is distinguished from
content routing, the process of routing based on n-dimensional hashes rather
than meaningful keywords. Semantic routing is a WHAT layer candidate and
can be found in other systems, e.g. the LimeWire proposal [14] to add query
routing to the Gnutella network, a subset of which was implemented as part
of the LimeWire ultra-peers framework. The query-routing proposal involves
nodes creating indices that summarise their contents and distributing them to
other nodes, such that queries can be routed more effectively. Crespo & Garcia-
Molina [15] propose a similar approach called ”Routing Indices”.

Older work related to semantic routing includes the Whois++ system [16],
which provides a mechanism for forwarding queries to distributed servers on the
basis of the content of those servers. The Harvest system [17] provided a com-
parable service along with caching and replication, as did the Content Routing
approach of Sheldon et al. [18], which included query refinement and merging
of result sets. Q-Pilot [19] is a more recent example of this kind of system that
routes queries to different search engines based on their specialization.

3 Simulation

The goal of the simulations presented here is to look at the scalability and
efficiency of search in an example meta-data search layer. Previous simulations [1]
showed increasing search performance in semantic routing networks relies on two
things:

1. connectivity adjustments based on user feedback
2. a relation between node meta-data and the searches they generate

The current simulations take a look at how the final stable network connec-
tivity varies as a function of the search query distribution, under the following
assumptions:

1. document meta-data consists of keywords
2. each node contains some documents (or location pointers)
3. nodes maintain connections to a subset of other nodes

104 S. Joseph

4. nodes have some knowledge about other nodes content

The various simulation parameters can be seen in the following table:

K Set of Keywords {k1, k2, ...}
D Set of Documents {d1, d2, ...}
N Set of Nodes {n1, n2, ...}

M Document Meta-Data Subset of KxD
P Node Contents Subset of DxN
C Node Connectivity Subset of NxN
B Node Knowledge Base Subset of NxKxN

nkd Number of keywords describing a document
ndn Number of documents contained in each node
noc Number of initial outgoing connections for each node
moc Maximum number of outgoing connections for each node
mka Maximum number of knowledge associations for each node

|D| Overall number of documents
|K| Overall number of keywords
|N | Overall number of nodes

mpl Maximum path length - number of hops before a query is discarded
fd Forwarding degree - #connections along which a query is forwarded

KD Distribution from which keywords are taken to create documents
DD Distribution from which documents are taken to create contents
ND Distribution from which nodes are taken to create connections
TD Distribution from which a target document d’ will be taken
SD Distribution from which the search origin node s’ will be taken
SP Search Policy that determines which nodes to forward to

The objective is to identify the target locations T (d) = {n|(d, n) ∈ P}, where
T (d) is the set of target locations that contain a target document d. Ideally we
would start the search process by selecting some subset of keywords from some
kind of keyword search distribution, however in order to avoid searches with
no targets an alternative approach is to specify a document to search for, d,
and then select a search origin node, s. Others have also taken this simplifying
approach in p2p simulation studies [20] and we hope to improve upon it in
future simulations. The document can be selected from D according to some
distribution TD, or selected according to other criteria that relate it to the
contents of the origin node. This latter approach is important in semantic routing
as it means that adjustments in connectivity following successful searches cause
nodes to become specialists in the location of a documents described by a limited
subset of keywords. The general search procedure can be specified in set theoretic
terms as follows:

P2P MetaData Search Layers 105

1. Choose d such that: d ∈ SD ∧ ∃n[(d, n) ∈ P]
2. Select K ′(d) such that: K ′(d) = {k|(k, d) ∈ M}
3. Choose s such that: s ∈ N ∧ (d, s) ∈ P
4. Set n′ = s
5. Select N ′(k, n′) such that: N ′(k, n′) = {n|(n′, k, n) ∈ B ∧ k ∈ K ′(d)}
6. if |N ′(k, n′)| = fd then set N ′′ = N ′(k, n′)
7. else if |N ′(k, n′)| < fd then set N ′′ = N ′(k, n′) and set N ′′ = N ′′∪{n|n ∈ N}

until |N ′′| = fd
8. else if |N ′(k, n′)| > fd then make N ′′ ⊂ N ′(k, n′) where |N ′′| = fd
9. For each n′′ ∈ N ′′

a. if ∀k[k ∈ K ′ ∧ (k, d) ∈ M ∧ (d, n′′) ∈ P] then set T ′ = T ′ ∪ {n′′} and set
C = C ∪ {(n′′, s)}

b. else set s = n′′ goto 5

The procedure in plain English

1. Select a target document that exists somewhere in the network
2. Construct a search query based on the target documents keywords
3. Find a start node that does not already contain the target document
4. Make a record of the start node
5. Use the start node’s knowledge base to determine a set of nodes to query
6. If the #nodes is equal to the forwarding degree select those nodes
7. If the #nodes are less than the forwarding degree select additional nodes
8. If the #nodes are more than the forwarding degree then select a subset
9. For each selected node

a. If the node contains the target document update connectivity
b. If it does not, continue the search using this node as the start

For clarity the above pseudo-code leaves out a couple of other constraints, i.e.
that no node can process a given search request more than once, and all search
requests cease once they have been passed along mpl times. An alternative to
step 1 is:

1. Choose d such that: ∃n[(d, n) ∈ P] ∧ (d′, s) ∈ P ∧ (k, d) ∈ M ∧ (k, d′) ∈
M ∧ (d, s) ∈ P

Or more simply, “Select a target document that is present in the network and has
at least one keyword in common with the documents in the search start node,
but is not actually in the start node”. This alternative allows semantic routing
to support improved search efficiency and we shall look at this more closely in
Section 4. For the moment let us focus on other aspects of the simulation, e.g.
that for an fd value of 2 or above the search proceeds in parallel (see fig 1),
allowing more than one match to be found. Also important is that whenever
matches are found the origin node becomes connected to the node that contains
the matching document; removing its eldest connection if the moc has been
exceeded.

In a real network this connectivity adjustment would depend on user feed-
back indicating whether a search was really successful. This simulation assumes

106 S. Joseph

Fig. 1. A Gnutella-like flooding scheme (left) compared with a semantic routing scheme
(right). In the semantic routing scheme, each node consults its knowledge base to
determine which nodes to forward the query to. A match triggers a new connection to
the start node, and the addition of that node and search keywords to the start nodes
knowledge base.

ideal users who are always happy with the search results; an assumption that
naturally we are working to remove. Node knowledge is updated in a similar
fashion to the node connectivity, i.e. the node conducting the search adds data
to its knowledge base associating the keywords of the target document with the
node that contained the matching document.

Previous simulations [1] of this kind have shown us that the alternative target
selection approach that links search targets to a nodes local meta-data contribute
to improving search performance. Given knowledge of the sets K, D and N ,
the parameters nkd and ndn and assuming KD, ND and DD are all uniform
distributions; we can infer the expected number of search targets for each node
under the alternate target selection scheme. First we calculate the expected
number of unique keywords of all the documents in a single node, E[k], given
|K|, nkd and ndn is:

E[k] = |K|.
⎡
⎣1 −

(
i=nkd∏

i=1

|K| − i

|K| − i + 1

)ndn
⎤
⎦ (1)

i.e. the number of keywords times the probability a single keyword will be se-
lected for inclusion in some set of ndn documents each with nkd, where keywords
are selected without replacement for each document. Further, the expected num-
ber of documents that will share a given keyword, E[d], can be expressed as:

E[d] = |D|.
[
1 −

(
i=nkd∏

i=1

|K| − i

|K| − i + 1

)]
(2)

i.e. the number of keywords times the probability a single keyword will be se-
lected for inclusion in some set of ndn documents each with nkd keywords are
selected without replacement for each document. Multiplying E[k] and E[d] we
get roughly the expected number of documents that will become search targets
for the alternative target selection scheme, where a target document is selected
on the basis that it shares a keyword in common with the contents of the search
origin node. In the next section we shall see how this value relates to the stable
state of a converged network that has employed semantic routing.

P2P MetaData Search Layers 107

4 Results

Previous simulation studies [1] demonstrated that network simulations using se-
mantic routing and the alternative target selection scheme would find their path
lengths converging, whereas equivalent networks using random routing would
fail to show any significant reduction in search path length. It was also shown
that adjusting the keyword-document distribution (KD) had a significant effect
on this convergence process, with a Zipf distribution slowing the convergence.
Joseph [1] suggested that this effect might be due to fact that the Zipf distri-
bution caused more documents to share keywords and thus increase the range
of search targets being selected for each node. Analysis of the simulation model
along with some the simulations presented in this paper back up this explanation.

Simulations were performed for values of |D| = 2000, |K| = 1000, nkd = 3 and
for a few different values of ndn. [Other parameters were |N | = 1000, moc = 100,
mka = 300, mpl = 9, fd = 2, noc = 3] The average connectivity of the simulated
networks after 100000 search iterations is shown in fig 2, along with the predicted
number of target documents for the alternative target selection scheme. Under
the right conditions, simulations of networks using semantic routing converge to
a stable state with low search path length (somewhere between 1 and 2 hops),
and increased connectivity levels i.e. an increased average number of connections
per node. What figure 2 is showing us is that the number of connections per node
in a converged network appears to mirror the expected number of search targets.
This supports the idea that the connectivity level of the converged network is a

Fig. 2. Average connectivity levels (no of connections per node) of the converged net-
work on the y-axis, with predicated (red dotted line) and simulated values (blue solid
line - error bars are standard deviation) for different values of the number of documents
in each node (ndn).

108 S. Joseph

Fig. 3. Evolution of no of matches (actual number of documents retrieved), recall
(proportion of possible matches retrieved), message transfers and path length of first
match, for increasing search iterations.

function of the range of documents being searched for by each individual node.
The results in fig 2 are for a simulation with only a loose constraint (i.e. max
100) upon the number of allowed connections. To the extent that one places
tighter restrictions on the connectivity level, the converged network path length
increases. For example, if we restrict the connectivity to a maximum number of
20 in a network with an ndn of 3, i.e. below what it would normally stabilise at,
we get results like those in fig 3.

In this case the path length converges to a value around 3, with a much
higher standard deviation than the equivalent case where the connectivity level
is allowed to rise unconstrained [1]. This indicates that the operation of semantic
routing, in combination with connection/knowledge updates and an appropri-
ate target selection scheme, causes nodes to stabilize their connectivity levels
when they are connected to enough other nodes that can directly service their
search needs. So if the target selection scheme is such that each node will likely
generate searches for 40 different documents, then a connectivity of around 40
will allow the node to meet all its search needs in a single hop, albeit by having
connected itself to the nodes that contain all the documents it will ever need.
If the node is restricted to connect to 20 nodes, the search path length will still
stabilise but at a higher value, as now some documents will be a few more hops
away. Simulations performed on larger networks found that convergence may

P2P MetaData Search Layers 109

take many more search iterations, but that convergence can be achieved given
that a large enough number of searches originate from each individual node. So
for example 100,000 search iterations on a 1000 node network gives an average of
100 searches starting at each node, enough searches to allow a good proportion
of the possible targets to be the basis for an actual search. Thus, to achieve the
same number of searches originating from each node in a 10,000-node network
we need to perform a million searches. Simulations of a million search iterations
on a 10,000-node network showed that the network converged to a path length
of around 2, but that its connectivity level is comparable with that of a 1000
node network.

5 Conclusion

So what are these rather preliminary simulations telling us about the scalability
of this path length reduction effect? Firstly that it can be attributed to adjust-
ments in the network connectivity, and that secondly the connectivity required
by the network is not, at least superficially, a function of the number of nodes in
the network. This suggests that the effect should be scalable to larger networks,
but on the other hand it is not quite clear if semantic routing is actually neces-
sary - perhaps connectivity adjustment alone would suffice? Actually, assessing
scalability now switches to understanding the query distribution of the individ-
ual users. In networks that adjust their connectivity to meet search needs, users
that search for similar documents within a consistent section of the meta-data
space will have their needs met swiftly, but more unpredictable users will not
be served so well. What this indicates is a need to examine not just the average
path length, but also the path length of searches for different users characterised
by their query distributions, as well as for different searches generated by the
same user. Another area of ambiguity is time to converge to a stable network,
which could become prohibitively large. The dynamic nature of real p2p networks
may mean that the network can never reach this stable state, so we would need
to study performance away from equilibrium. One hopes that semantic routing
might give a reduction in network traffic over flooding, but what needs to be
checked is whether flooding in combination with connectivity changes would lead
to swifter convergence.

One way forward is more realistic simulations using parameters and distri-
butions that reflect real network environments. In addition the nature of the
convergence of the variables (e.g. path-length and connectivity) needs to be sta-
tistically assessed in a more rigorous fashion. Ideally we would move towards
some standardised approach to p2p simulations as advocated in [20]. The simu-
lations presented in this paper were all run on the open source NeuroGrid p2p
simulator, which can be found at http://www.neurogrid.net. The NeuroGrid p2p
simulator is designed to be an extensible system that supports many different
types of simulation, and provides access to shared requirements such as providing
test distributions for simulation parameters.

110 S. Joseph

6 Discussion

So semantic routing allows each node to become a specialist in a particular
meta-data area. One can argue about whether the search query distribution
SD in a real P2P network would be similar to the alternative target selection
scheme that supports this result, but it seems plausible that users will search
for things that are related (if tangentially) to files they possess. Studies of the
Gnutella network [21] suggest that the search queries follow a Zipf distribution,
but it is difficult to determine (due to the mechanics of Gnutella) what the
search distributions of individual users are, and how they relate to the files in
the users local node. This kind of data might also be obtained from Search
Engine companies [22], but it has proved difficult to obtain this data, since these
companies are understandably cautious about giving away potentially valuable
marketing data. Meta-data search layers face additional issues as follows:

Q1: P2P systems exhibit high churn - nodes coming and going rapidly. How
does this affect the ongoing adjustment of node knowledge?

A1: A semantic routing layer that is updating local node state clearly relies
on some degree of regularity in the environment in order to route queries effec-
tively. To the extent that the environment changes faster than the system can
update, the system will not forward queries effectively. However proper integra-
tion with user feedback will allow the system to isolate those stable aspects of
the environment that can be relied upon.

Q2: There is also high churn of content - how will a semantic routing search
layer deal with short-lived content, or unpopular content on short-lived nodes?

A2: If content is not available for any length of time then nodes’ knowledge
will not be updated fast enough to direct queries against this data. To the extent
that the short-lived content is related to the existing content of the node making
it (or the reference to it) available, then the semantic routing will be effective.
The only alternative for short-lived content would be some kind of advertising
system that would be susceptible to adversarial nodes broadcasting inaccurate
meta-data. More realistically short-lived content should be cached automatically.
Unpopular content is a different matter. Given that at least some nodes become
specialists in a particular type of content, then as soon as one accesses those
nodes, the unpopular content can be easily found. The difficulty of finding the
right nodes will depend on how broad a range of data can be stored by the
largest nodes in the system, and on whether the network connectivity does form
a small world [23]. This relates to how knowledge base storage limits should be
enforced (see Q5).

Q3: How much state must each node keep? What other network parameters
will this be related to?

A3: The nature of semantic routing systems would seem to operate well in
tandem with giving a user freedom to store as much or as little data on “their”
node as they like. Different users have different bandwidth, CPU and storage
resources available to them. The simulations presented above suggest that the
number of connections that each node must store in order to support low search
path lengths is a function of the query search distribution of that node. One

P2P MetaData Search Layers 111

would imagine that in a real system that would have a different query search
distribution for each node/user, that connectivity would form a small world
network. The simulations above suggest that limiting connectivity to below the
level required by the search query distribution does not cripple the network, but
simply places lower bounds on the average search path length. Also in a small
world, not having enough resources to support a large connectivity or knowledge
base do not mean terrible performance as long as you can connect to users/nodes
that do.

Q4: What are the trade-offs in choosing which nodes to maintain knowledge
on, and which to ignore? What policies will be employed to limit the size of
knowledge bases?

A4: Clearly any node will only be able to devote a certain amount of re-
sources to its knowledge base. Naturally one would try to optimize the use of
that resource by tracking the more reliable nodes; reliable that is in terms of
being able to respond to queries and being able to supply things the user is in-
terested in. Ideally more storage resources are devoted to things that interest the
user, i.e. the keywords being frequently used in queries. The simulations above
enforced their limits on connectivity and knowledge by removing the oldest en-
tries when limits were exceeded. There are other options including least recently
used caches, and ideally nodes and beliefs about their contents will be tracked
to the extent that they participate in searches that lead to positive user feed-
back. This line of reasoning suggests that one might employ a scheme similar to
backpropagation in neural networks, where each node in the neural network is
strengthened or weakened to the extent that it participates in the correct iden-
tification of incoming stimuli. Such an approach in a p2p network would require
additional messaging to provide feedback data after the user at the search origin
node has assessed the results. Realistically this kind of scheme would only seem
practical in a network of co-operating non-adversarial nodes.

Q5: How will the system deal with adversarial nodes that provide inaccurate
responses to meta-data queries, and forward queries inappropriately?

A5: Adversarial nodes are a problem in many p2p systems and the semantic
routing approach, in combination with user feedback, attempts to deal with this
by effectively storing reputation information about other nodes in the knowl-
edge of each node. As the number of adversarial nodes increases finding reliable
trustworthy nodes becomes more and more difficult. Still, to the extent that
one can identify these reliable nodes, valid search results can still be extracted
from the network. Some authors have started to address this issue [20], and the
NeuroGrid simulator is being modified to incorporate adversarial or dishonest
nodes, along with attempts to make all aspects of the simulations more realistic
with regards to ranges of parameters, distributions and operational reliable (i.e.
node, connection, and content churn). Being able to cope with adversarial nodes,
churn and other hazards of p2p networks is the main objective of this research,
and there is still a long way to go.

112 S. Joseph

References

1. Joseph, S.: Neurogrid: Semantically routing queries in peer-topeer. In: Interna-
tional Workshop on Peer-to-Peer Computing. (2002)

2. Nejdl, W., Wolf, B., Qu, C., Decker, S., Sintek, M., Naeve, A., Nilsson, M., Palmer,
M., Risch, T.: Edutella: A p2p networking infrastructure based on rdf (2001)

3. Clarke, I., Sandberg, O., Wiley, B., Hong, T.W.: Freenet: A distributed anonymous
information storage and retrieval system. LNCS 2009 (2001) 46+

4. Kronfol, A.Z.: Fasd: A fault-tolerant, adaptive scalable, distributed search engine.
Technical report, Princeton University (2002)

5. Stoica, I., Morris, R., Karger, D., Kaashoek, M.F., Balakrishnan, H.: Chord: A
scalable peer-to-peer lookup service for internet applications. In: SIGCOMM, ACM
Press (2001) 149–160

6. Cohen, B.: Incentives build robustness in bittorrent. In: Workshop on Economics
of Peer-to-Peer Systems. (2003)

7. Ratnasamy, S., Francis, P., Handley, M., Karp, R., Shenker, S.: A scalable content
addressable network. In: ACM SIGCOMM. (2001)

8. Harren, M., Hellerstein, J.M., Huebsch, R., Loo, B.T., Shenker, S., Stoica, I.: Com-
plex queries in dht-based peer-to-peer networks. In: 1st IPTPS. (2002)

9. Ratnasamy, S., Shenker, S., Stoica, I.: Routing algorithms for dhts: Some open
questions. In: 1st IPTPS. (2002)

10. Kan, G.: 8. In: Peer-to-Peer: Harnessing the Benefits of Disruptive Technologies.
O’Reilly & Associates (2001) 94–122

11. Wilcox-O’Hearn, B.: Experiences deploying a large-scale emergent network. In:
1st IPTPS. (2002)

12. Salton, G., Yang, C.: On the specification of term values in automatic indexing.
Journal of Documentation 29 (1973) 351–372

13. Babaoglu, O., Meling, H., Montresor, A.: Anthill: A framework for the development
of agent-based peer-to-peer systems. In: 22nd ICDCS. (2002)

14. Rohrs, C.: Query routing for the gnutella network (2002)
15. Crespo, A., Garcia-Molina, H.: Routing indices for peer-to-peer systems. In: 22nd

ICDCS. (2002)
16. Deutsch, P., Schoultz, R., Faltstrom, P., Weider, C.: Architecture of the whois++

service (1995)
17. Bowman, C.M., Danzig, P.B., Hardy, D.R., Manber, U., Schwartz, M.F.: The

Harvest information discovery and access system. Computer Networks and ISDN
Systems 28 (1995) 119–126

18. Sheldon, M.A., Duda, A., Weiss, R., Gifford, D.K.: Discover: a resource discovery
system based on content routing. Computer Networks and ISDN Systems 27 (1995)
953–972

19. Sugiura, A., Etzioni, O.: Query routing for web search engines: Architecture and
experiments. In: 9th WWW. (2000)

20. Kamvar, S., Schlosser, M., Garcia-Molina, H.: Eigenrep: Reputation management
in p2p networks. In: 12th WWW. (2003)

21. Sripanidkulchai, K.: The popularity of gnutella queries and its implications on
scalability (2001)

22. Xie, Y., O’Hallaron, D.: Locality in search engine queries and its implications for
caching. In: Infocom. (2002)

23. DJ, W., SH, S.: Collective dynamics of small-world networks. Nature 393 (1998)
440–442

A Peer-to-Peer Information System for the
Semantic Web

Sonia Bergamaschi1,2, Francesco Guerra1, and Maurizio Vincini1

1 Dipartimento di Ingegneria dell’Informazione
University of Modena and Reggio Emilia
Via Vignolese 905, 41100 Modena, Italy

{bergamaschi.sonia,guerra.francesco,vincini.maurizio}@unimo.it
2 IEIIT-BO-CNR, Viale Risorgimento 2,

I-40136 Bologna, Italy

Abstract. Data integration, in the context of the web, faces new prob-
lems, due in particular to the heterogeneity of sources, to the fragmen-
tation of the information and to the absence of a unique way to struc-
ture and view information. In such areas, the traditional paradigms, on
which database foundations are based (i.e. client server architecture, few
sources containing large information), have to be overcome by new ar-
chitectures. The peer-to-peer (P2P) architecture seems to be the best
way to fulfill these new kinds of data sources, offering an alternative to
traditional client/server architecture.
In this paper we present the SEWASIE system that aims at providing
access to heterogeneous web information sources. An enhancement of
the system architecture in the direction of P2P architecture, where con-
nections among SEWASIE peers rely on exchange of XML metadata, is
described.

1 Introduction

Data integration has been extensively studied in the past, in the domain of
company infrastructures. Data integration, in the context of the web, faces new
problems, due in particular to the heterogeneity of sources, to the fragmenta-
tion of the information and to the absence of a unique way to structure and
view information. In such areas, the traditional paradigms, on which database
foundations are based (i.e. client server architecture, few sources containing large
information), have to be overcome by new architectures. The peer-to-peer (P2P)
architecture seems to be the best way to fulfill of these new kinds of data sources,
offering an alternative to traditional client/server architecture. The most relevant
advantages of the approach are related to the improved scalability (increased
storage, increased bandwidth) and flexibility of the systems.

New problems, related to the definition of specific ways to describe the con-
tents of a source, i.e. its metadata w.r.t this architecture, and to allow sources
to exchange data with each other, have to be faced. These issues are being re-
cently addressed, and partially resolved by (proposed) standard like XML (that

G. Moro, C. Sartori, and M.P. Singh (Eds.): AP2PC 2003, LNAI 2872, pp. 113–122, 2004.
c© Springer-Verlag Berlin Heidelberg 2004

114 S. Bergamaschi, F. Guerra, and M. Vincini

allows systems to exchange data across different platform), RDF (that provides
a uniform manner to describe sources), OWL (that is a proposal of a standard
ontology definition language) and WSLD (that is the language to define web ser-
vices). In this paper, we focus on research problems associated with knowledge
management and search in data-sharing P2P systems. Starting from a previous
work [1], we present the SEWASIE system that aims at providing access to het-
erogeneous web information sources. An enhancement of the system architecture
in the direction of P2P architecture, where connections among SEWASIE peers
rely on exchange of XML metadata, is described.

2 Peer-to-Peer Approach

Though data-sharing P2P systems are capable of sharing enormous amounts of
data (e.g., 0.36 petabytes on the Morpheus network as of October 2001), such
a collection is useless without mechanisms allowing users to quickly understand
and search for desired pieces of data. Designing such a mechanism is difficult in
P2P systems for several reasons: scale of the system, unreliability of individual
peers, different semantics associated to similar peers, etc. In particular it has to
define the behavior of peers in three areas:

Topology: Defines how peers are connected to each other. In some systems
(e.g. Gnutella, www.gnutella.com), peers may connect to whomever they wish.
In other systems, peers are organized into a rigid structure, in which the number
and nature of connections is dictated by the protocol. Defining a rigid topology
may increase efficiency, but will restrict autonomy.

Data placement: Defines how data or metadata is distributed across the
network of peers. For example, in Gnutella, each node stores only its own collec-
tion of data. In Chord[2], data or metadata is carefully placed across nodes in a
deterministic fashion. In super-peer networks [3], metadata for a small group of
peers is centralized onto a single super-peer.

Message routing: Defines how messages are propagated through the net-
work. When a peer submits a query, the query message is sent to a number of the
peer’s “neighbors” (that is, nodes to whom the peer is connected), who may in
turn forward the message sequentially or in parallel to some of their neighbors,
and so on. When, and to whom, messages are sent is dictated by the routing
protocol. Often, the routing protocol can take advantage of known patterns in
topology and data placement, in order to reduce the number of messages sent.

The distributed, heterogeneous and unstructured nature of the Web poses a
new challenge to query-answering over multiple data sources. In particular, it is
no longer realistic to assume that the involved data sources act as if they were a
single (virtual) source, modeled as a global schema, as is done in classical data
integration approaches. In this paper, we propose an alternative approach where
we replace the role of a single virtual data source schema with a peer-to-peer
approach relying on limited shared (or overlapping) vocabularies between peers.
Since overlaps between vocabularies of peers will be limited, query processing
will have to be approximate. We provide a formal model for such approximate

A Peer-to-Peer Information System for the Semantic Web 115

query processing based on limited shared vocabularies between peers, and we
show how the quality of the approximation can be adjusted in a gradual man-
ner. The result is a flexible architecture for query-processing in large, distributed
and heterogeneous environments, based on a formal foundation. This architec-
ture is suitable for knowledge-sharing in the peer-to-peer-style networks that are
expected to be typical of the Semantic Web.

3 Core Topics

3.1 Global Architecture

The idea underlying our proposal is that at a local level things may be done more
richly than at a wider level. Each peer contains specific information about the
involved domains but only an high layer of this knowledge should be exported to
other peers by using a standard language and a standard model to represent the
structure of the source. We should therefore envision a multi-level architecture,
with local nodes and communities with strong ties helping them develop a strong
integration of their knowledge and information, with a semantic context which
is well defined and offers a globally integrated ontology to represent everything,
while at a wider level the relationships among distinct nodes are established by
means of weaker mappings. The definition of the architecture is guided by the
following reference scenarios:

– Building and maintaining a new information node: We think each
web site is a peer of this P2P network. Updates on the web sites will involve
a change in the exported information.

– Establishing and maintaining mapping relationships among dis-
tinct information nodes, that directly derives of the previous point: a
change of the peer information will generate a change of the mappings among
different peers.

– Querying the system by a user, in order to obtain the required infor-
mation

A satisfying the aforementioned principles, goals, and desiderata system ar-
chitecture is shown in Figure 1.

The information nodes (SINodes) group together modules which work
to define and maintain a single administrative, or logical node of information
presented to the whole network. A single information node may comprise several
different systems.

The user interface contains modules which work together to offer an inte-
grated user interaction with the semantic search system. Typically each user in
the network will install and configure its own instance of the user interface. This
interface has to be personalised and configured with the specific user profile and
the reference to the ontologies which are commonly used by this user.

The brokering agents are the peers responsible for maintaining a view of
the knowledge handled by the network, as well as the information on the specific

116 S. Bergamaschi, F. Guerra, and M. Vincini

Fig. 1. General Overview of the peer-to-peer SEWASIE architecture

content of some information nodes which are under direct control. These agents
have direct control over a number of information nodes, and provide the means
to publish a manifesto within the network of the locally held information.

The query agents are the carriers of the user query from the user interface
to the information nodes, and have the task of solving a query, interacting with
the brokering agent network. Starting from a user- or task- specified broker-
ing agent, they may access other BAs, connect with several information nodes,
collect partial answers, and integrate them.

3.2 Information Nodes

Information Nodes (SINodes) are mediator-based systems, each including a
Virtual Data Store, an Ontology Builder, and a Query Manager. In [4,5] we
proposed the mediator-based system MOMIS (Mediator envirOnment for Mul-
tiple Information Sources) as a pool of tools to provide an integrated access
to heterogeneous information. More to face the issues related to scalability in
the large-scale, in [6,7] we propose the exploitation of mobile agents in the in-
formation integration area, and, in particular, their integration in the MOMIS
infrastructure.

Virtual Data Store (VDS): It represents a virtual view of the overall
information managed within any SINode and consists of the managed informa-
tion sources, wrappers, and a metadata repository. The managed Information
Sources are heterogeneous collections of structured, semi-structured, or unstruc-
tured data, e.g. relational databases, XML or HTML documents.

Wrappers are the “docking stations” of the heterogeneous data sources. They
are software modules in charge of the mediation between the internal representa-

A Peer-to-Peer Information System for the Semantic Web 117

tion of each data source and the functionalities of the SINode. Different wrappers
have to be defined to cover structurally diverse sources. The wrapper interface
will be uniform and independent of the underlying source type. Two major func-
tions need to be performed by the wrappers: to support the translation of the
structure of the information managed by local sources into the SINode descrip-
tion language and the translation of the queries from the SINode query language
into the specific query language of the underlying source.

The architecture of the VDS module is inherently distributed (i.e. in most
cases its functionality will be distributed among several host machines of different
types). As a consequence, these components will all need to have inter-process
communication functionalities to support the interaction.

Ontology Builder (OB): It is the collective name of a set of functionalities
which will support the creation and maintenance of a global virtual view (GVV)
of the managed sources and the mapping description between the GVV itself
and the integrated sources. The ontology building process is a cooperative one,
involving the designers; it begins with the creation of a common thesaurus of
the information provided by wrappers, that is terminological intensional and
extensional relationships describing intra-schema knowledge about classes and
attributes of each source schemas.

Based on such information and on designer supplied relationships capturing
specific domain knowledge, the OB performs semiautomatic intra and inter-
schema analysis by exploiting lexicon derived relationships, which are based on
processes like synonyms identification or generalisation-specialisation relations,
and inferring new relationships.

All these relationships are considered in the subsequent phase of construction
of the ontology. Such an activity is based on hierarchical clustering techniques
and supports the emergence of a number of global classes (GVV) representative
of all the classes coming from the sources and of a mapping description between
the GVV and the local sources.

Query Manager (QM): It is the coordinated set of functions which take
an incoming query, define a decomposition of the query w.r.t. the mapping of the
GVV of the SINode onto the data sources relevant for the query, send the queries
to the wrappers in charge of the data sources, collect their answers, perform any
residual filtering as necessary, and finally deliver to the requesting query agent.

3.3 Brokering Agents

In a distributed information system it is necessary to maintain and share the
information about the knowledge made available by the system. In order to fa-
cilitate the interoperability and reusability of knowledge resources, we need to
provide a flexible infrastructure to taking into account the change of data and
metadata and not to provide a specific application useful only to a target do-
main. The proposed approach builds on the W3C XML standard and uses an
object oriented data and query model [4] throughout the SEWASIE Network. In
the proposed architecture this task is performed by the brokering agents (BAs),

118 S. Bergamaschi, F. Guerra, and M. Vincini

which are peers of the network that share knowledge and metadata. The knowl-
edge within a brokering agent is represented as an ontology, i.e. a network of
interrelated concepts. Relationships between concepts are defined as mappings
expressed by a formal language. The language, called ODLI3 (see [4] for a de-
tailed description) is based on ODMG object model and OLCD Description
Logic [8] and is represented by XML language. The ODLI3 language [4] may
be used to describe heterogeneous schemata of data sources in a common way.
In the context of the global ontology of an information node ODLI3 introduces
new constructors useful in the integration process and in the global integrated
view representation. In particular, there are intensional relationships express-
ing inter-schema knowledge for the source schemas defined between classes and
attributes names (terms): SYN (Synonyms), BT (Broader Terms), NT (Nar-
rower Terms) and RT (Related Terms). Intensional relationships SYN, BT and
NT between two classes may be ”strengthened” by establishing that they are
also extensional relationships. Moreover, mappings between the global integrated
view and schemata of data sources can be defined.

A brokering agent knows exactly all the ontologies which are present in the
underlying information nodes, and has general information about related (to its
own) ontologies in other nodes.

The depth of the information of the BA becomes more and more shallow with
the distance (with respect to some metrics) between the ontologies for which it is
“expert” (those of its underlying information nodes) and other ontologies covered
within the system. Its information on other (non local) ontologies is incomplete.

Different brokering agent roles may be envisioned, depending on the business
model of the organisation which deploys the brokering agent. A company (or a
group of companies) may establish a brokering agent to manage a common access
to its information sources. On the other end, a specialised information brokering
enterprise may establish a brokering agent that combines ontologies provided by
several other brokering agents and clustering around a specific domain. Thus,
we can identify the following classes of brokering agents:

– local service BAs are servicing a single information node or a group of nodes
and are usually close to the nodes

– pure informant BAs are collectors of references to several brokering agents
and may specialise in a certain domain, and may be positioned anywhere in
the network

At an abstract level, the operation of the brokering agent can be divided into
two phases:

1. Design Phase (mapping time)
– The brokering agent receives a local ontology describing data available

from a information node and has to map it into its own map of ontologies.
– The brokering agent receives information about other ontologies from

other brokering agents. This information also has to be mapped into the
existing ontology of the brokering agent.

A Peer-to-Peer Information System for the Semantic Web 119

2. Runtime Phase (query time)
– A query agent wants to know where it can find the information for a

query. The terms of the query are then matched with the concepts known
by the brokering agent. The brokering agent looks up its internal meta
information and returns pointers to the information nodes or other bro-
kering agents which have the requested information (or parts thereof).

– A component of the system (e.g., the query interface) extracts the com-
plete ontology which is managed by the brokering agent.

The design and runtime phases are not strictly separated. Ontologies need to be
mapped and updated during the whole life cycle of a brokering agent.

The crucial role of the brokering agent is the creation and maintenance of the
map of semantic relationships among concepts from different information nodes
in the system. In particular, the correlation among the concepts coming from
different sources (ontologies of information nodes and other brokering agents)
relies on terminological relationships. They are created by the brokering agent
which, in a (semi-) automatic way, analyses the meaning of the concepts in
different ontologies and tries to discover terminological relationships among them
by exploiting lexical ontologies such as Wordnet. Once the repository of these
mappings has been created, the brokering agent is in charge of its maintenance:
changes in the network have to be integrated to make the repository consistent
with the new scenario.

At runtime, when a request from a query agent is received, the quality of
the answer of the BA (and of the query agent) depends to a large degree on the
quality of the semantic relationships that have been created. Incorrect relation-
ships will lead to incorrect answers of the query agent, e.g. data that should not
be included in an answer to a query will be delivered as result. Incomplete (or
missing) relationships will lead to incomplete results, e.g. data that should be
included in the answer is not delivered as a result (although it is somewhere avail-
able in the network). Thus, special attendance has to be given to the creation
of the semantic relationships. Automatic creation of the semantic relationships
is possible, but the creation of relationships based only on the lexical similar-
ity between terms will lead to incorrect and incomplete results. On the other
hand, manual control of the creation is not possible in every case as a brokering
agent might handle a large number of information nodes. Thus, updates to the
semantic relationships might happen quite frequently and manual control would
significantly slow down the process of establishing semantic relationships.

BA’s Architecture

The basic architectural schema of the BA is described in figure 2. The map
keeper is the maintainer of the mapping information concerning the local infor-
mation nodes and the other BAs and supported ontologies. It builds is a partial
description of the information available within the system, with varying degrees
of precision and richness; higher detail will be available for the local information
nodes, less detail will be available for other ontologies.

120 S. Bergamaschi, F. Guerra, and M. Vincini

Fig. 2. Basic Architectural Schema of the BA

The playmaker receives a request from the listener on behalf of a query agent,
and identifies the information nodes or other BAs which may offer an answer
(or parts thereof). It connects with the waiting query agent and provides the
corresponding directions, consisting of addresses of SINodes and/or other BAs,
plus ontology information so that the Query Agent can perform the necessary
query rewriting before submitting the queries to the SINodes.

The listener process is in charge of receiving requests from other entities in
the system; in fact, it embeds much of the transport layer and communication
support, including the enforcement of security and policy features. The listener is
in charge of authentication (identification of the user, identification of the server),
establishing the parameters for a secure connection, logging, and verifying the
user profile vs the requested service. After receiving a request it dispatches it to
an instance of the playmaker or the map keeper for further processing. In this
phase the listener may also act as a load balancer when the playmaking and map
keeping functionalities are deployed on a distributed architecture.

The librarian is a service component, being the provider of repository services
to the other components of the BA. It is made of a listening module and one or
more repository modules. Wrappers may be used to encapsulate different long
term storage devices (like DBMSs, file systems, XML files, or whatever else).

3.4 Query Agents

The query agent is the actual carrier of a query from a user to the system. The
term “query” has to be interpreted as a general statement in a known interme-
diate query language which is interpreted by SINode components (SINode query
managers) within the system. This query includes information on the context of
the user at the time of the establishment of the query. This means that infor-
mation about the specific activity of the user, his/her preferences, feedback on
appreciation of the results of similar queries in the past under similar circum-
stances, and so on, are embedded in the query.

A Peer-to-Peer Information System for the Semantic Web 121

The query agent is the network query manager and “motion item” of the
system, and it should be the only carrier of information among the users and
the system. Therefore it should be able to do several jobs:

– carrying a query and the relevant pieces of the user ontology/profile which
may help the brokering agents to qualify the semantics of the query (this
includes both the case of a user–defined query and the case of system–defined
query, like a query issued by the monitoring agent)

– defining the query plan, doing the query rewriting for a specific SINode, and
merging the results from several SINodes

– processing the information given by the BA and identifying the SINodes
to be accessed for answering the query, and on which further BA peers to
contact to possible get more answer to the query

– carrying back the results (both data and metadata)

Query agents are instantiated by the users for each request to the system, or
also by the system itself for a load balancing criteria. In a such a way, the
user performs a global search in a virtual environment and ignores where the
information has been actually maintained and managed.

4 Concluding Remarks

Within highly decentralized, dynamic and mobile information system, the tra-
ditional client/server architecture seems not to be sufficient. Searching in the
web by using a client/server paradigm, i.e. search engines, cover only a subset
of available information and often the information is not up to date due to large
amount of time for the crawling operation.
In contrast, querying information sources in a P2P network performs the re-
trieval of up to date information stored only in the relevant data stores. In this
context Napster and Gnutella are examples of application in which every peer
shares information with all other peers of the community.
In this paper, we present the SEWASIE system that aims at providing access to
heterogeneous information sources. Our approach, like above systems, supposes
each peer shares information and each data source (i.e. customers of SEWASIE
network) decides directly what data and information they want to make avail-
able over the network, without the need for publishing and maintaining them
in a specific server. So that, each peer (i.e. the BA) is responsible for the sub-
set of information it makes available on the network and no centralized global
information system is required. In fact, by choosing a peer-to-peer platform for
our application, we have overcome the need for building a centralized (virtual
or materialized) repository for a large amount of semi-structured information,
with the related problems of synchronizing multiple accesses to the data and the
scalability problems of each centralized architecture.

Acknowledgements. This work is supported in part by the 5th Framework IST
programme of the European Community through project SEWASIE within the

122 S. Bergamaschi, F. Guerra, and M. Vincini

Semantic Web Action Line. The SEWASIE consortium comprises in addition to
the author’ organization (Sonia Bergamaschi is the coordinator of the project),
the Universities of Aachen RWTH (M. Jarke), Roma La Sapienza (M. Lenzerini,
T. Catarci), Bolzano (E. Franconi), as well as IBM Italia (G. Vetere), Thinking
Networks AG (C. Engels) and CNA (A. Tavernari) as user organisation.

References

1. Bergamaschi, S., Guerra, F.: Peer to peer paradigm for a semantic search engine.
In: Workshop on Agents and Peer-to-Peer Computing. (2002) LNCS 2530, Springer.

2. Stoica, I., Morris, R., Liben-Nowell, D., Karger, D., Kaashoek, M.F., Dabek, F.,
Balakrishnan, H.: Chord: a scalable peer-to-peer lookup protocol for internet appli-
cations. IEEE/ACM Transactions on Networking 11 (2003) 17–32

3. Daswani, N., Garcia-Molina, H., Yang, B.: Open problems in data-sharing peerto-
peer systems. In: Proceedings of the 9th International Conference on Database The-
ory. (2003)

4. Bergamaschi, S., Castano, S., Beneventano, D., Vincini, M.: Semantic integration
of heterogenous information sources. Journal of Data and Knowledge Engineering
36 (2001) 215–249

5. Beneventano, D., Bergamaschi, S., Castano, S., Corni, A., Guidetti, R., Malvezzi, G.,
Melchiori, M., Vincini, M.: Information integration: The momis project demonstra-
tion. In: VLDB 2000, Proceedings of 26th International Conference on Very Large
Data Bases, September, 2000, Cairo, Egypt, Morgan Kaufmann (2000) 611–614

6. Bergamaschi, S., Cabri, G., Guerra, F., Leonardi, L., Vincini, M., Zambonelli, F.:
Exploiting agents to support information integration. International Journal on Co-
operative Information Systems 11 (2002)

7. Beneventano, D., Bergamaschi, S., Gelati, G., Guerra, F., Vincini, M.: Miks: an
agent framework supporting information access and integration. In Bergamaschi,
S., Klusch, M., Edwards, P., Petta, P., eds.: Intelligent Information Agents - The
AgentLink Perspective Lecture Notes in Computer Science N. 2586, Heidelberg,
Germany, Springer-Verlag (2003) 22–49

8. Beneventano, D., Bergamaschi, S., Sartori, C.: Description logics for semantic query
optimization in object-oriented database systems. ACM Transactions on Database
Systems 28 (2003) 1–50

G-Grid: A Class of Scalable and Self-Organizing
Data Structures for Multi-dimensional Querying

and Content Routing in P2P Networks

Aris M. Ouksel1,� and Gianluca Moro2

1 Department of Information and Decision Sciences, University of Illinois at Chicago
2402 University Hall, 601 South Morgan Street

M/C 294 Chicago, IL 60607-7124, USA
aris@uic.edu

2 Department of Electronics, Computer Science and Systems, University of Bologna
Via Venezia, 52, I-47023 Cesena (FC), Italy

gmoro@deis.unibo.it

Abstract. Peer-to-Peer (P2P) technologies promise to provide efficient
distribution, sharing and management of resources, such as storage, pro-
cessing, routing and other sundry service capabilities, over autonomous
and heterogeneous peers. Yet, most current P2P systems only support
rudimentary query and content routing over a single data attribute, such
as the file-sharing applications popularized in Napster, Gnutella and so
forth. Full-fledged applications in distributed data management and grid
computing demand more complex functionality, including querying and
content routing over multiple attributes. In this paper we present a class
of scalable and self-organizing multi-dimensional distributed data struc-
tures able to efficiently perform range queries in totally decentralized
dynamic P2P environments. These structures are not imposed a priori
over the network of peers. Rather, they emerge from the independent in-
teractions of autonomous peers. They are also adaptive to unanticipated
changes in the network topology. This robustness property expands their
range of usefulness to many application areas such as mobile ad-hoc net-
works.

1 Introduction

Peer-to-Peer (P2P) networks are emerging as a new computing paradigm for
locating and managing contents distributed over a large number of autonomous
peers. Autonomy implies that peers are not subject to central coordination. Each
peer plays at least three roles, either as (i) a server of data and services, (ii) a
client of data and services; and/or (iii) a router for network messages. P2P sys-
tems offer the prospect of realizing several desirable properties of emergent sys-
tems, including self-organization, which provides the ability to self-administer,
scalability, which enables support large number of users and resources without
� Research partially supported by NSF grant IIS-0326284

G. Moro, C. Sartori, and M.P. Singh (Eds.): AP2PC 2003, LNAI 2872, pp. 123–137, 2004.
c© Springer-Verlag Berlin Heidelberg 2004

124 A.M. Ouksel and G. Moro

performance degradation, and robustness, which makes the system fault-tolerant
in the event of peer failure or a peer leaving the distributed system [1].

Content in P2P systems can be conceptually represented as a single relational
table, with multiple data attributes, horizontally partitioned among peers. Just
as in distributed databases, the location of data partitions is transparent to users.
Many popular and currently-deployed P2P systems actually follow this model
in organizing shared files on the web. Some of the most well-known are Gnutella
[2,3] and its descendants such as Kazaa, Morpheous, WinMX, Emule. This first
generation of P2P systems provided a valued service for many users, but they
suffered from several drawbacks including, the inefficiency of the routing mech-
anism and the poor query expressibility. Routing is based on message flooding,
with a likely implication of increasing network congestion in data-intensive ap-
plications. Queries are limited to single-attribute lookup operations, restricting
thus the range of possible of applications in a P2P environment. These problems
along with the demands of web users spurred research for alternative struc-
tures. Building on previous work in uni-dimensional distributed data structures,
such as RP*, LH* [4,5], DRT [6], [7], several new approaches were proposed.
Among the most noteworthy are Chord [8], tapestry [9], Pastry [10], P-Grid [11],
PeerDB [12]. These new systems did indeed improve performance and extended
the flexibility of search by allowing querying by content. However, their limi-
tation to single-attribute queries have continue to stymie efforts to expand the
range of applications within acceptable performance results.

Many P2P applications demand richer query semantics over several at-
tributes, comparable to those available in centralized relational DBMSs. Con-
sider for example distributed data mining in a health application. In several
practical scenarios, the data is likely to be distributed across a large number of
hospitals, where each hospital can be viewed as an autonomous peer. The discov-
ery of patient clusters with similar characteristics, such as gravity of disease, age,
residence, sex and so on, requires executing partial range queries on multiple-
attribute data distributed across several hospitals. Processing such queries would
involve running a combination of individual single attribute queries, followed by
an intersection step to filters out unqualified patients. Clearly, this operation
will be cost-prohibitive in a distributed environment. This is only one example.
Many similar applications will require efficient solutions to complex distributed
range queries.

Multi-dimensional structures have been extensively investigated over the last
20 years where the main goal is to support efficiently complex range queries
over multiple attributes. A literature survey in this area as well as two specific
structures, IBGF and NIBGF, can be found in [14,15]. These structures have
been designed for environments where both control and data are centralized,
and significant performance improvements have been achieved for both partial
and complete range queries. Yet, their adoption in commercial relational DBMSs
has remained very limited. We believe distributed environments may actually
provide more compelling justifications for their acceptance. While, in centralized
systems, range queries over a set of attributes may be processed using single-

G-Grid: A Class of Scalable and Self-Organizing Data Structures 125

attribute structures with acceptable performance, despite the large number of
local accesses to disk, the same queries in P2P systems will be singularly cost-
prohibitive without a multi-dimensional structure, as each local data access will
now give rise to several network messages. Dynamic pure P2P networks will
naturally amplify the severity of the costs because of continuous changes in the
content, its distribution, and the underlying network topology.

Because of autonomy of peers, P2P networks are analogous to complex dy-
namic organisms in their behavior. For example, local changes in the molecu-
lar structure of a chemical compound may aggregate to yield altogether a new
compound. A global property emerges generally from a series of simple local in-
teractions. The same phenomenon may also occur in the distribution of content
as autonomous peers interact independently with each other in a P2P system.
Thus, in addition to scalability, our goal is to seek structures for P2P systems
which exhibit emergence and self-organization properties characteristic of com-
plex systems, where local interactions and self-organization of peers lead to a
global organizational structure with excellent performance characteristics.

This paper is organized as follows: section 2 introduces the G-Grid struc-
ture and its principal features; section 3 illustrates G-Grid at work in P2P en-
vironments; section 4 discusses briefly performance issues; section 5 highlights
synthetically the robustness, and finally, section 6 summarizes the main ideas
presented in this paper.

2 G-Grid Definition

The G-Grid is a distributed multidimensional data structure, which organizes a
set of objects across any number of peers in a network. It is a novel structure
we developed and studied [13] from preceding works on multidimensional data
structures for centralized systems [14,15,16,17]. Each dimension represents one
attribute of the objects. For example, location of an object may be one possi-
ble attribute. The G-Grid partitions the space of objects, based on the attribute
values, into regions and structures these regions into a tree as follows (see the ex-
ample of Figure 1): a node of the tree represents a region in the multidimensional
data space and an edge links two regions, where one, called the child region, is
properly nested in the other, called the father region. The root node represents
the whole object space. One or more regions are assigned to one peer, and as
result one or more nodes of the G-Grid tree structure are associated with a peer.

Formally, consider a relation table T with attributes A0, A1, . . . , A(d−1), also
called keys, taking their values from domains D0, D1, . . . , D(d−1), respectively.
In G-Grid a relation is viewed as a bounded d-dimensional hypercube
[minD0, max D0)x...x[minDd−1, max Dd−1)
where each attribute is represented by one dimension of the space. For the sake
of generality, let us assume for now that this hypercube is normalized to the unit
cube. In other words, each attribute value is mapped to a rational number in
the half-open interval U=[0,1) by simple interpolation, assuming the attribute
domains are bounded but not necessarily finite. In practice, this is not necessary.

126 A.M. Ouksel and G. Moro

(0,0)

(0,0)

00 (0,2)
01 (1,2)

111 (7,3)
(0,2)) (1,2)

 region
 non-existing region
 ancestor-descendant relationship

(1,1)

0

0 1

10

1

11 (3,2)

1 (1,1)

Fig. 1. An example of a partitioned 2-dimensional space and its counterpart tree

The entire data space is U d, where each tuple of the relation is attached to a
point in U d, which is precisely the point whose coordinates along each dimension
represent the scaled values obtained by interpolation from the tuple. Given a
record k = (k0, k1, . . . , k(d−1)) of a relation R, each record k is represented by a
point k0 = (k0

0, k
0
1, . . . , k0

(d−1)) in U d.

The data space U d is decomposed into subspaces called regions, as in the
example of Figure 1. A region R is a d-dimensional hyper-rectangular subspace
of U d delineated by the pair I = (xmin, xmax), where xmin and xmax are d-
dimensional vectors representing the coordinates of the minimum and the maxi-
mum points in the subspace, respectively. Let x be a point in U d. Then a region
R can be defined formally as: R= {x/xmin ≤ x < xmax}. We refer to I as the
identifier of region R. Initially, the data space consists only of one region R=U d

whose identifier is I = {xmin = (0, 0), xmax = (1, 1)}. Any point in U d can be
viewed as the identifier of a region with a measure 0. The records that fall within
a region R are stored in a bucket of fixed size B. R is split when the number
of records in it exceeds B. The decomposition of R is carried out by carving
out a region R′ from the overflowing region. In the ideal case, R and R′ will
split the records in B in half. This split mechanism has been first introduced in
[15] and subsequently reutilized in another novel structure, the Generalized Grid
File (GGF), designed for cluster P2P computing [18]. Other researchers have also
adopted it, but for the single dimensional case, as for example in [11]. In [15], it is
shown that this split mechanism guarantees a storage utilization of no less than
one-third of the total size of a bucket. As a result, degenerate space partitioning
is avoided with positive consequence on the information retrieval capability.

Every region, and therefore any records, can also be identified by a pair of
integer number (π, l), where l means the number of times that the starting region
(labelled (0, 0)) has been split, while the binary conversion of π represents pre-

G-Grid: A Class of Scalable and Self-Organizing Data Structures 127

cisely the path from the root to the node representing the region (see Figure 1).
Value l represents also the size of the region, i.e., 1/2l.

It is important to note that the splitting of any region is totally a local
operation, and thus does not require any global information of the space. Looking
at the Figure 1 it is easy to understand that l also represents the length of the
binary conversion of π. When a new region is generated through a split we will
take the π of the direct parent region, calculate the value bin(π), adding in case
some “0” on the left to reach the length l, attach a “0” in the beginning of the
string for the left child or a “1” for the right one and then convert it again into
decimal value. For instance, the left child region of (1, 2) will be π = “0” +
bin(1) = “001” = 1 and the right one π = “1” + bin(1) = “101” = 5.

This splitting approach leads to regions that are either disjoint or properly
contain each other. The binary representing these regions differ in at least one bit,
in the case, or one is the prefix of the other in the second. Figure 1 illustrates
this relationship between regions. All regions at the same level cover disjoint
subspaces of the space, we refer to this as the spatial property ; whereas regions on
the same are contained in each other, we refer to this as the cover property. As a
consequence, the identifier of the deepest region where a record might be located
can be computed prior to starting the search using the current maximum number
of splits. If the target region does not exist, then the record will be located in one
of its parent along the same path in the binary tree. As a result of the balanced
load achieved by the split mechanism, and the fact that search is done along on
the same path of the tree, the record search cost is logarithmic in the number
of messages between regions. Next Section shows that thanks to a full learning
capability, which is another fundamental feature we have introduced in G-Grid,
search costs are less than logarithmic and can also be constant in some realistic
scenarios independently on the number of peers in the overlay network.

3 G-Grid in P2P Environments

The G-Grid tree structure is embedded in the network of peers. Not all peers in
a network are necessarily part of the G-Grid. Thus an edge in the tree structure
may actually correspond to a path in the network.

The network consists of two kinds of peers: (i) s-peers, or structure-peers, are
those that do manage at least one region of the G-Grid; (ii) c-peers, or client-
peers, are those that do not manage any region. Both s-peers and c-peers may
issue operations (object search requests, insertions, and possibly deletions) to
other s-peers, and in addition s-peers provide routing tables to the operations.
Initially the G-Grid may consist of only one s-peer. In the process of performing
search operations, peers learn their routing table by learning new edges as shown
in Figure 2. Progressively, they build an internal map of the whole object space
across all s-peers in the G-Grid. This information is eventually exploited during
subsequent operations to find more efficient routes to the desired objects. The
goal is to minimize the number of hops in dynamic P2P networks where the
structure grows and the interaction between peers increases. In addition the

128 A.M. Ouksel and G. Moro

Py

Px

Pw

Pz

Py

Px

Pw

Pz

A B

Fig. 2. A) Peers involved by an operation issued by Peer Pw routed towards Pz; B)
Learning of new (dot line) links among them after completing the operation.

learning mechanism contributes to distribute the workload among peers, even if
they are hierarchical structured according to a tree. We report in the next section
some experiments and theoretical analyses that explain the crucial variables
governing the complex behaviours of the system.

Two interacting peers may decide to distribute control of their objects
through a partitioning of their respective object spaces. What does trigger the
distribution of control ? When the set of objects in an s-peer grows in a way that
the s-peer becomes a bottleneck, an s-peer may spawn new nested regions, which
are then handed over to other interacting peers (s-peers or c-peers, which then
evolve to become s-peers) for control. Alternatively, the hand over may occur
through direct solicitation of other available peers.

Spawning may also be triggered by application-specific considerations. For
example, let us assume that objects represented in the G-Grid structure are
mobile, and one of the attribute is location. If the distance between the location
of a peer and the location of its objects goes over a pre-specified threshold, a
new region may be spawned into an appropriate available c-peer or merged into
an available s-peer in a way which reduces the distance between peers and the
objects in the region. Thus, the objects in peers migrate from one peer to another
to bring them closer to the actual objects they represent. The proximity concept
applies also in the case of mobile s-peers. As an s-peer moves away from the
location of objects it manages, these objects are handed over to an s-peer that is
closer to the objects. While the notion of proximity is used here in the context
of geographic distance, it can be readily extended to other types of attributes.

In summary the main features of the G-Grid are the following:

– distributed: The objects in the G-Grid are distributed across autonomous
peers.

– emerging: The structure is not imposed a-priori on the set objects in the
distributed environment. Rather, the structure is built incrementally and

G-Grid: A Class of Scalable and Self-Organizing Data Structures 129

P1

((0,0),nil)

((0,2),P1) ((1,2),P1)

((7,3), P1)

�

((0,2), P1) ((1,2), P1)

((0,0),nil)
((7,3),

 region managed by the peer
 non-existing region
 pointer to a region of another peer

Fig. 3. A partitioned 2-dim space locally at Peer P1 and its counterpart tree

emerges dynamically as peers interact with each other and learn each other’s
content.

– self-organizing: The decision for two peers to participate in the G-Grid struc-
ture and to distribute control among them is not imposed externally.

– scalable: The G-Grid is scalable in that its performance does not deteriorate
as the number of peer increases.

3.1 G-Grid Split Rules

Peers are autonomous, and each peer views itself initially in control of its own
whole object space (0,0), but at any one time it contains data located in only
one region of the partitioned space. The remainder of the space is represented by
index entries to other data regions contained in other peers. Initially, the data
region in a peer coincides exactly with space (0,0). Each peer maintains a portion
of the overall index, i.e., routing table, learned through its direct interactions
with other peers.

As two peers interact and voluntarily decide to participate in the G-Grid,
their spaces are partitioned into two nested regions with each peer taking con-
trol of one of the regions and keeping a pointer to the other peer and the region
it holds. In general one of the two nested region may be collapsed in its father
region. For instance, Figure 3 depicts a structure partitioned in three regions
distributed across three peers. In particular the Figure depicts the physical par-
titioning at Peer 1, which stores locally the region (0,0) and three pointers to
Peers managing the black-colored regions. The interacting peers will also keep
track of the region descriptor describing each other’s assigned region. These
latter descriptors become part of a local content-based routing table. The par-
titioning policy is flexible and may be driven by application and performance
considerations.

130 A.M. Ouksel and G. Moro

Here we formally introduce the split rules giving also an example.
Let us introduce the following notations:

– Let (r, λ) denote the identifier of the region assigned to a peer P, denoted
also P (r, λ) in case of ambiguity with peers managing a region with the same
identifier; region (r, λ) contains both data elements and index entries and,
when there is no ambiguity, it will also represent its content.

– Let +, *, and - represent the set union, intersection, and difference operators.
– Let (r, λ) denote the complement of (r, λ), namely (r, λ) + (r, λ) = (0, 0),

that is the whole space, and (r, λ) ∗ (r, λ) = ∅. Note that (r, λ) is a concave
space and therefore does not satisfy the definition of a region, moreover it
contains only pointers to regions, which may enclose (r, λ) or be disjoint with
it. Pointers are learnt through interactions with other peers.

– Let ((r
′
, λ

′
), P ′) denote an index entry in P indicating that (r

′
, λ

′
) is located

in peer P ′; in case of ambiguity it is denoted P ((r
′
, λ

′
), P ′). Note that when

P
′
=nil, then the content of the region is local.

– Let (r
′
, λ

′
)H denote a special pointer in P, which represents a placeholder

for region (r
′
, λ

′
) whose elements are those not in P (r, λ). At some step

during the lifecycle of the structure, (r
′
, λ

′
) was the region contained in P

and then was later reduced to region (r, λ). The contents in (r
′
, λ

′
) − (r, λ)

were transferred to P’ from P during the split operation.

The placeholder has no impact on the logical organization of the structure,
the search procedure, except perhaps to increase the number of elements in a
peer. It acts simply as a routing element necessary during transient states of the
structure. This indirection in the search is necessary for those peers interacting
with P and requesting elements in (r

′
, λ

′
)−(r, λ). After the first interaction, these

peers will have learned the new path and therefore it is no longer necessary to
go through P , and instead go directly to P ′. In other words, the organization
will adapt naturally and incrementally to the new structure.

The split is always local to the two peers being split. There is no propagation
to other peers and the completeness defined in [18] is preserved in G-Grid by
construction.

Let us assume that two peers P1 and P2 meet and that they manage (r1, λ1)
and (r2, λ2) respectively. There are two cases:

A. (r1, λ1) ∗ (r2, λ2) = ∅, namely they manage two disjoint regions
B. (r1, λ1) ⊆ (r2, λ2) or vice versa

which correspond to the two following rules:

A. (r1, λ1) ∗ (r2, λ2) = ∅
• (r

′
1, λ

′
1)=(r1, λ1)+(r2, λ2)/(r1, λ1);

(r
′
2, λ

′
2)=(r2, λ2)+(r1, λ1)/(r2, λ2);

• (r′
1, λ

′
1)=(r1, λ1)−(r1, λ1)/(r2, λ2)+ ((r2, λ2), P2);

• (r′
2, λ

′
2)=(r2, λ2)−(r2, λ2)/(r1, λ1)+ ((r1, λ1), P1);

B. (r2, λ2)∗(r1, λ1) = ∅.

G-Grid: A Class of Scalable and Self-Organizing Data Structures 131

�

((0,0),nil)

((0,1), P2)

((1,2), P2)

(0,1),P2)

((1,2), P2)

P2

((0,0),nil)

Fig. 4. A partitioned 2-dim space locally at Peer P2 and its counterpart tree

• Let (r1, λ1) = (r1, λ1)+(r2, λ2);
• Split (r1, λ1) into (r

′
1, λ

′
1) and (r

′
2, λ

′
2)

• (r′
1, λ

′
1) = (r1, λ1)− ((r2, λ2), P2)-((r1, λ1),nil)+(r

′
1, λ

′
1), nil))

+((r
′
2, λ

′
2), P2);

• (r′
2, λ

′
2) = (r2, λ2)− ((r1, λ1), P1)-((r2, λ2),nil)+((r

′
2, λ

′
2), nil)+

((r
′
1, λ

′
1), P1);

• If r
′
2 ⊂ r2 Then (r2, λ2)=(r2, λ2)+((r2, λ2), P1)H

Else if r2 ⊂ r
′
2 Then

∗ (r′
2, λ

′
2)=(r′

2, λ
′
2)−(r2, λ2)/ ((r

′
2, λ

′
2)-(r2, λ2)) and

∗ (r2, λ2)=(r2, λ2) + (r2, λ2)/ ((r
′
2, λ

′
2)-(r2, λ2)).

For space reasons we limit the description of the rules by giving a single
example related to the meeting of Peer 1 and 2 represented in Figure 3 and
Figure 4 respectively. In each Figure is depicted both the spatial structure and
its correspondent tree. The two peers manage the same region (0,0), therefore
must be applied the rule B. First of all the two structures of Figure 3 and Figure 4
are conceptually merged by simply superimposing the two trees (see Figure 5A);
a region identifier may be associated with a list of peers containing data located
in the same spatial region.

Then, as illustrated in Figure 5B the rule performs a buddy split of the
region (0,0) generating two regions: (0,1) and (1,1). Finally, the merged structure
is divided between the two peers as depicted in Figure 6. We highlight that the
region (0,1) has been collapsed in (0,0) of Peer 1, while Peer 2 has introduced a
placeholder towards Peer 1.

4 Performance Analyses

For space reasons we present here only some of the empirical results, which we
have conducted by implementing a simulation of G-Grid, and some theoreti-

132 A.M. Ouksel and G. Moro

(0,0)

P2(1,1)
P1(0,1) ,
((0,1),P2)

((1,2),P1),
((1,2),P2)

(0,2),P1)

((7,3),P1)

B

P1(0,0) , P2(0,0)

((0,1),P2)

((1,2),P1),
((1,2),P2)

((0,2),P1)

((7,3),P1)

A

the split region

Fig. 5. A) Merged tree by superimposing the one of Fig. 3 and Fig. 4; B) Merged tree
after the split of the region (0,0) in (0,1) and (1,1)

P1(0,0)

((1,1), P2)

((0,1),P2)

((0,2),P1)

((0,0) P1)H

P2(1,1)

((1,2),P1) ,
((1,2),P2) ((7,3),P1)

BA

Peer 1 Peer 2

Fig. 6. Physical configurations A) at Peer 1 by collapsing (0,1) in (0,0), and B) at Peer
2 with a placeholder to (0,0) of Peer 1

cal results confirming these experiments. The simulation manages exact match
queries and record insertions and incorporates both the region splitting mech-
anism and the learning capability. Moreover it can be configured with some
parameters, such as the region bucket size b and the rate of insertions with re-
spect to queries insertions

queries . In the experiments the structure evolves and grows
in a dynamic fashion starting from one peers and by generating operations ran-
domly. On this basis G-Grid is a stochastic system with complex behaviours
where each state of the system depends on the preceding one, but the set itself
of the states evolves dynamically over the time growing very quickly and making
hard any analysis based on Markov chains.

However we have found the split probability, which predicts the growth of
the system and it is useful to find important theoretical results related to the
average path length (APL) to deliver any message in the system.

G-Grid: A Class of Scalable and Self-Organizing Data Structures 133

0
0,05

0,1
0,15

0,2
0,25

0,3
0,35

0,4
0,45

0,5

1
0

0

2
0

0

3
0

0

4
0

0

5
0

0

6
0

0

7
0

0

8
0

0

9
0

0

1
0

0
0

1
1

0
0

1
2

0
0

1
3

0
0

1
4

0
0

1
5

0
0

P eers

S
p

li
t

P
ro

b
.

Simulation Theoretical

Fig. 7. The approximated theoretical split prob. compared with a simulation

For space reasons we limit to present here the simplest version which
well approximates the mentioned above probability for very low values of the
bucket size.

Split Probability Definition: Let t be any instant in the life of a G-Grid
structure G and let us denote the following variables:

– Nt = records at the instant t randomly distributed in G
– Mt = regions/peers in G at the instant t
– b = the region bucket size

then the split probability is the probability that a record insertion at the instant
t ends in a region already full with b records, namely:

Ps(Nt, Mt, b) =
1

k − j + 1
·

k∑
i=j

i

Mt
(1)

where j and k, which are the minimum and maximum number of full regions
respectively, are the following:

j = max(Nt − Mt · (b − 1), 0) k = floor

(
Nt − b

3 · Mt

2
3 · b

)
(2)

Figure 7 illustrates a numeric comparison between the formula 1 and an
experiment conducted with b = 6 where the system grows up to more than 1500
peers. The two split probabilities oscillate until there are less than 50 peers,

134 A.M. Ouksel and G. Moro

0,95

1

1,05

1,1

1,15

1,2

1,25

1,3

1,35

1 11 21 31 41 51 61 71 81 91 101 111 121 131 141 151

Peers

Average Path Length

Fig. 8. When insertions
queries

≈
1

M2
t

the average path length to deliver messages tends to 1

then both of them stabilize with a difference around 2.5%; in all experiments
the stabilization occurs always independently on the rate insertions

queries . Experiments
have also confirmed an average storage utilization per region equals to 2b

3 , that
is the number of records stored on average by regions.

The rate insertions
queries instead is determining for the APL in the system, in fact

if the rate remains constant the APL tends to grow, but less than logarithmically
with respect to the number of peers. This effect is due to the learning capability
which reduces the distances in the system by creating new links. Finally, we ver-
ified both theoretically and experimentally that if the rate insertions

queries changes like
Θ(1

M2
t
) then the APL in the system tends quickly to 1 (see Figure 8). Intuitively

this can explained by the fact that both queries and insertions creates new links
in the system, but in addition insertions cause splits introducing new regions
and new peers which increase the APL. In several realistic scenarios the number
of queries is more than quadratic with respect to the number of users/machines,
for instance in the World Wide Web each user access may originate in cascade
many messages and queries. Also the execution of more traditional queries, such
as joins and range queries, can generate that number of requests.

5 Robustness

The G-Grid allows peers to connect and disconnect autonomously from the struc-
ture. C-peers can connect and disconnect without an impact on the overall G-
Grid structure, except perhaps that responses to their already initiated requests
will not have a return address. On the other hand, an non-anticipated discon-
nection of an s-peers may make the s-peer’s objects and local routing table inac-
cessible. Thus, it is important that s-peer return local information to the system
in non-catastrophic disconnection. An orderly disconnection is one where an

G-Grid: A Class of Scalable and Self-Organizing Data Structures 135

s-peer hands over its content to another peer to preserve data accessibility and
routing information. It can: either (i) merge its local information (both objects
and routing table) to its father s-peer or a child s-peer., or, (ii) solicit a c-peer
as a replacement. The choice is determined based on policies which will enhance
the overall performance of the system.

A disorderly disconnection of a s-peer occurs in catastrophic situations
such as computer crashes or physical network problems. Objects in the s-peer
become inaccessible and routing through the s-peer is no longer possible. De-
pending on the network topology, a disorderly disconnection could cause the
G-Grid partitioning into two disjoint component. To enhance robustness of the
system, one approach is through duplication of information in s-peers. Besides
the associated information integrity problems, duplication does not eliminate the
problem of G-Grid partitioning, it only reduces the likelihood of its occurrence.
Our approach is to avoid altogether duplication and rely on the learning mech-
anism of the system, which establishes incrementally links between the various
s-peers as the level of interaction increases, and thus provides multiple routes
to get to s-peers. To what extent does the learning mechanism reduce the like-
lihood of G-Grid partitioning? Our preliminary experimental results show that
the likelihood of partitioning is practically nil. What will be the effect on perfor-
mance and availibility of data in combining both duplication and the learning
mechanism? Answers to these questions require an extensive robustness analysis,
which we intend to do in the future.

After a disorderly disconnection, an s-peer may rejoin the G-GRID either as
a c-peer or as an s-peer. If it chooses the former approach, it will have to issue
direct insertion requests for all its objects to the G-Grid system. In the latter,
it will have to wait for an interaction with another s-peer and then integrate its
content through the normal partitioning process.

As indicated earlier, an important concept in the G-Grid is the peers’ ability
to learn other peers’ local routing tables during search operations. As a peer in-
teracts with other peers, its local routing table grows and improves its capability
to find the most efficient route to its target objects. Clearly, learning content-
based routing tables is an emergent property in that the minimum path to a
target peer is discovered without having to encode into the system a minimum
path algorithm.

6 Conclusions

In this paper, a class of scalable self-organizing data structures for P2P networks,
called the G-Grid, is introduced. These structures enable efficient multidimen-
sional search based on partial range queries. We have also illustrated how peers
can exploit the properties of these structures to learn dynamically both the dis-
tribution of content and the network topology, and thereby, provide algorithms
for efficient processing of range queries. In the worst case, search costs for a
single object, measured as the number of hops over peers, are logarithmic in the
number of peers. But, for many realistic workloads of insertions of new objects

136 A.M. Ouksel and G. Moro

and retrievals, such as those currently taking place on the web, the average is
equal or less than 2 hops, independently on the wideness of the P2P network.
We have also sketched out an aspect which is seldom treated in P2P literature,
namely the possibility of merging independently constructed data structures.
This is particularly important for two autonomous organization, which make
the decision to share data between them for commercial or scientific reasons.

This work is a summary of ongoing work towards the idea of achieving virtual
DBMSs from P2P systems as a set of emergent services, but which abide by
the same desirable properties of centralized DBMSs, namely, data integrity and
consistence, transaction processing and a complete SQL expressiveness.

References

1. Moro, G., Ouksel, A.M., Sartori, C.: Agents and peer-to-peer computing: a promis-
ing combination of paradigms. In: Proceedings of the First International Workshop
on Agents and Peer-to-Peer Computing, Bologna, Italy, July 2002. Volume 2530.,
Springer (2003) 1–14

2. Jovanovic, M.A., Annexstein, F.S., Berman, K.A.: Scalability issues in large peer-
to-peer networks - a case study of gnutella. Technical Report Technical Report,
University of Cincinnati (2001)

3. Kan, G.: 8. In: Peer-to-Peer: Harnessing the Benefits of Disruptive Technologies.
O’Reilly & Associates (2001) 94–122

4. W. Litwin, M. A. Neitmat, D.A.S.: RP*–A Family of Ordered–Preserving Scalable
Distributed Data Structures. In: In Proceedings of the 20th International Confer-
ence on Very Large Data Bases (VLDB’94), Santiago, Chile. (1994) 342–353

5. W. Litwin, M. A. Neitmat, D.A.S.: LH*–Linear Hashing for Distributed Files.
ACM Transactions on Database Systems 4 (1996) 480–525

6. B. Kröll, P.W.: Distributing a search tree among a growing number of processors.
In: In Proceedings of the ACM International Conference on Management of Data
(SIGMOD’94), Minneapolis, MN, USA, ACM Press (1994) 265–276

7. Pasquale, A.D., Nardelli, E.: Adst: An order preserving scalable distributed data
structure with constant access costs. In Carey, M.J., Schneider, D.A., eds.: Pro-
ceedings of the 28th Conference on Current Trends in Theory and Practice of Infor-
matics (SOFSEM’01), Piestany, Slovak Republic. Volume 2234., Springer-Verlag
(2001) 211–222

8. Stoica, I., Morris, R., Karger, D., Kaashoek, M.F., Balakrishnan, H.: Chord: A
scalable peer-to-peer lookup service for internet applications. In: SIGCOMM, ACM
Press (2001) 149–160

9. Zhao, B.Y., Kubiatowicz, J., Joseph, A.: Tapestry: An Infrastructure for Fault-
tolerant Wide-area Location and Routing. In: Technical report, UCB/CSD-01-
1141, University of California, Berkeley. (2001)

10. Rowstron, A., Druschel, P.: Pastry: Scalable, decentralized object location, and
routing for large-scale peer-to-peer systems. Lecture Notes in Computer Science
2218 (2001) 329–340

11. Aberer, K., Cudré-Mauroux, P., Datta, A., Despotovic, Z., Hauswirth, M.,
Punceva, M., Schmidt, R.: P-Grid: A Self-organizing Structured P2P System.
SIGMOD Record 2 (2003)

G-Grid: A Class of Scalable and Self-Organizing Data Structures 137

12. Ng, W.S., Ooi, B.C., Tan, K.L., Zhou, A.Y.: PeerDB: A P2P-based System for Dis-
tributed Data Sharing. In: International Conference on Data Engineering (ICDE).
(2003) 633–644

13. Ouksel, A.M., Moro, G.: G-Grid: A Class of Scalable and Self-Organizing Data
Structures for Multi-dimensional Querying and Content Routing in P2P Networks.
Technical Report DEIS-LIA-002-04, February, DEIS University of Bologna (2004)

14. Ouksel, A.M.: The interpolation-based grid file. In: Proceedings of the ACM
SICACT-SIGMOD Symposium on Principles Of Data Base Systems, ACM (1985)
20–27

15. Ouksel, A.M., Mayer, O.: A robust and efficient spatial data structure: The nested
interpolation-based grid file. Acta Informatica 29 (1992) 335–373

16. Ouksel, A.M., Kumar, V., Majumdar, C.: Management of concurrency in
interpolation-based grid file organization and its performance. Information Sci-
ences Journal 2 (1994) 129–158

17. Ouksel, A.M., Kammermeier, F.: The interpolation-based grid file revisited. Tech-
nical Report Progress Report, PhD dissertation, Computer Science Department,
Kaiserslautern University (2002)

18. Ouksel, A.M., Moro, G., Litwin, W.: GGF: A Generalized Grid File for Distributed
Environments. Technical Report UIC-IDS-CRIM/TECH-REPORT No.2002-05,
University of Illinois at Chicago, DEIS University of Bologna (2002)

Fuzzy Cost Modeling for Peer-to-Peer Systems

Bo Ling1, Wee Siong Ng2, YanFeng Shu3, and AoYing Zhou1

1 Department of Computer Science and Engineering,
Fudan University, Shanghai, P.R. China

{lingbo, aoying}@fudan.edu.cn
2 Singapore-MIT Alliance,

3 Department of Computer Science,
National University of Singapore, Singapore

smangws@nus.edu.sg, shuyanfe@comp.nus.edu.sg

Abstract. Exiting cost estimation models suffer from several limita-
tions. First, static cost model is not capable of reflecting real-time situ-
ations. Second, dynamic cost model is not scalable due to its extensive
probe queries. Third, these models are not designed for ad-hoc systems
such as P2P, since dynamism of peers is not taken into consideration.
In this paper, first, we propose a progressive “push-based” remote cost
monitoring approach. We derive a generic static cost model from con-
ventional static approach. Agents will be sent to remote hosts with a
generic cost model and epsilons (ε) indicating the acceptable magnitude
of cost change, i.e., percentage of coefficient changed. An update will be
sent (pushed) to original host once the magnitude of the cost changes ex-
ceeds . Second, we introduce a fuzzy cost evaluation metric in additional
to traditional evaluation criteria for handling the dynamism of P2P sys-
tems. This metric gives a confident measurement of a peer’s reliability.

1 Introduction

Peer-to-Peer (P2P) has opened up a new area of research in networking and dis-
tributed computing. Such systems are inexpensive, easy to use, highly scaleable
and do not require centralized administration. Despite the advantages offered
by P2P technology, it poses many novel challenges for the research community.
Querying remote cost information for producing an effective query plan is among
one of the crucial challenges, especially in supporting complex P2P query sys-
tems, such as OLAP caching [1] and P2P DBMS [2] applications.

Many approaches have been suggested for estimating query cost in dis-
tributed information sources. Generally, it can be categorized into static cost
model and dynamic cost model. Static cost model derives a generic model based
on calibration [3][4], sampling [4] or statistical approach [5]. These models are
seldom changed (i.e., the coefficient) once they have been derived and all pa-
rameters used for the cost estimation are known a priori before execution of the
plans. It is assumed to work in a static environment where the workload of re-
mote hosts may not change dynamically. However in the context of heterogeneous
and dynamic environment such as Internet and P2P, it is unrealistic to assume

G. Moro, C. Sartori, and M.P. Singh (Eds.): AP2PC 2003, LNAI 2872, pp. 138–143, 2004.
c© Springer-Verlag Berlin Heidelberg 2004

Fuzzy Cost Modeling for Peer-to-Peer Systems 139

that every site has the same query execution capabilities. Moreover, workload
of a host might be increased dynamically when concurrency tasks are being
supported. As a result, executing cost will be significantly increased. Hence, cost
estimation deployed in a static environment cannot be migrated directly into dy-
namic environments without major modification. Adali et. al. [4] have proposed
a semi-dynamic approach, a cost estimation strategy based on statistics. The
statistics are cached for each actual call to remote sources. Consequently, cost
of the possible plans can be estimated based on the available statistics cached
previously. A dynamic cost model with a probe-based optimization strategy is
proposed in [6]. This approach is capable of reflecting more accurately real-time
cost statistic of remote hosts. However, it is not scalable due to extensive increase
in the number of probe queries.

Furthermore, existing cost models employ discrete functions as their cost
measurement metric, which we claim are not appropriate for ad-hoc P2P sys-
tems. For an example, assuming there are two peers in the system namely Peer1
and Peer2 with both offering similar resources. Let PeerQ be the peer who ini-
tiated a query. Assume the cost of executing a query q at Peer1 and Peer2 is
5 and 6 units respectively. Based on these discrete cost values, PeerQ expects
the query is executed cheaper in Peer1 than in Peer2 for execution. However, in
reality, Peer1 might not be reliable, e.g., the frequency of its disconnection from
the network might be higher than Peer2, which is not reflected in the discrete
cost model. Upon PeerQ notices Peer1 is disconnected from the network, it has
to resubmit the query to Peer2 for processing. As a result, PeerQ may end up
paying higher cost than the plan of originally submitting to Peer2 due to the
disconnection of Peer1.

Based on the above observations, we propose the following solutions. First, we
follow a different approach focusing on a “push-based” mechanism. The approach
relies on agents that monitor cost on the remote data sources with progressive
cost updating. We first derive a generic static cost model from a conventional
approach [3][4]. Each agent will be sent to remote hosts with a generic cost
model and epsilons (ε) indicating the acceptable magnitude of cost changes, i.e.,
percentage of coefficient change. An update will be sent (push) to the original
host once the magnitude of the cost changes is greater than ε. Consequently, a
query optimizer can have near-real-time cost information (i.e., estimation based
on the coefficients and ε) of remote peers without heavily probing for the an-
swer. Second, we propose a fuzzy cost evaluation metric in addition to tradi-
tional evaluation criteria such as CPU, I/O and communication costs. Unlike
the conventional discrete cost model, fuzzy cost model is described in terms of
possibilities of occurrences of events. Since it is possible to estimate a maximum
processing time for a query based on history statistic records or sampling tech-
nique, a query optimizer needs to ensure choosing only peers with certain degree
of reliability, i.e., peer which is accessible during the period of query processing.
In this regard, we propose a fuzzy Reliability metric to describe the reliable cost
of remote peers. Therefore, the objective for a query optimizer is to find a good
plan that minimizes the processing cost and maximizes the reliability for a query.

140 B. Ling et al.

As a result, it can minimize performance degradation due to remote peer failure
which would cause query resubmission.

2 Cost Model

In this section, we start by defining the problem of query optimization in a
P2P environment. Subsequently, we describe a mechanism for progressive remote
cost monitoring. Finally, we propose our Reliability fuzzy metric for handling
dynamism of peers.

2.1 Problem Statement

Suppose there is a peer P who has n identifiers in its contact list . These n peers
are dynamic, i.e., they are allowed to leave and then join the network at any
time. Consider a query, q, requires a resource R for processing. Assume there
are k peers who have the sharable resource R, where k ≤ n. The objective is to
select one peer from the k, which provides a minimum query response time, and
with highest confidence that it will be the least likely offline during the period
of query processing.

The solution for the problem is two-fold. First, we would like to perform a
quick filtering on k peers; select the top-i (i � k) peers who have offered the
cheapest cost to process the query. The optimum situation is to have all the
“near-accurate” remote cost information stored in the local cache. Therefore,
decisions can be made instantly. Second, for each of the i peers, a simple query
will be sent to verify its reliability. Let’s assume a query requires maximum t
time to process. Peers with highest reliability which will be accessible for at
least a continues period of now + t, is considered as the candidate to process
the query.

2.2 Progressive Cost Monitoring

There are several criteria that greatly influence the cost needed for processing
a remote query, such as communication cost, load, remote invocation etc. For
simplicity, we outline the cost model at a very high level. Our purpose is not
to present the model details per se but to demonstrate an effective alternative
approach for remote cost monitoring with progressive updating. Typically, the
cost model estimates the cost in terms of time. We present a generic cost model as
Cost = α1 ·Tcpu + α2(Ti/o ·#I/Os) + α3 ·Tcom + α4(Ttrm ·#size), where the x is
the coefficient with respect to each evaluation criterion. Tcpu is the time for CPU
instructions and Ti/o is the time for a disk I/O. Together Tcpu and Ti/o are the
components that measure the remote processing cost. Tcom is the time required
for initiating remote communication during network establishment. It is a fixed
cost in most situations. Finally, Ttrm is the time it takes to transmit a data unit
(i.e., the size might be in terms of bytes for a packet or could be in a different
unit) from one peer to another. Previous studies on static query optimization

Fuzzy Cost Modeling for Peer-to-Peer Systems 141

assume all the mentioned costs (i.e., Tcpu, Ti/o, Tcom and Ttrm) remain constant.
While total transmission cost (i.e., Ttrm·#size) is proportional to the size of data
transferred. This may not be true for Internet-based environment as pointed out
in literature [6].

Our proposed solution is as follows. For each peer in the contact list, an agent
carrying the generic cost model will be sent to the remote peer. The objective is
to figure out the coefficients of the cost formulation. Local peer maintains a cache
to store the coefficients of remote peers. Query optimizer reads the local cache
when processing cost estimation for plan selection. However, when coefficients
are not found in local cache, e.g., a new peer has just been added into the contact
list, a new agent will be constructed and sent to the remote peer for collecting
the cost coefficient. Subsequently, that agent will be hosted there for continual
cost monitoring. Each evaluation criterion is associated with an epsilon which
indicates the range of an acceptable changes without notifying the original peers.
The purpose is to reduce the number of communication between the agents and
home peer. If a peer is removed from the contact list, its corresponding cost
monitoring agent at the remote site will be dropped.

2.3 Peer Reliability

In this section, we introduce the Time-Hierarchical (TM-H) structure and for-
mulation of Reliability fuzzy set to estimate the costs associated with dynamism
of peers.

Time-Hierarchical (TM-H) structure. Most of the computer users exhibit
certain patterns of usage behavior when they join and leave the network. This
behavior is strongly correlated to the Time-Of-Day or Day-of-Week, e.g., office
users may connect to the network during office hours (9am to 6pm), from Monday
to Friday. Therefore, in order to predict the reliability of a peer, the timing is
important. For example, office users may have high reliability during 9am to
11am as compared to 9pm to 11pm. Based on this observation, we proposed
a Time-Hierarchical (TM-H) model to capture the behavior and formulate a
Reliability fuzzy characteristic to evaluate it

Fig 1 (left) illustrates the TM-H model. It is a tree-like structure where
each peer in the network maintains its own TM-H structure. In addition, it is
also an append-only structure which supports “add” and “update” operation.
The leaf (H-Level) provides the basic cost information. This cost information is

Fig. 1. The TM-H Architecture And The Basic active Component

142 B. Ling et al.

measured in terms of active. Each active corresponds to five minutes network
connection time, i.e., time that it is accessible by other peers. Intuitively, we can
visualize the basic component at the H-Level as an array of 24 discrete boxes
representing 24 hours of the day. Each box is further subdivided into 12 active.
Fig 1 (right) shows a graphical representation of active component with the
gray shaded boxes indicating the total number of active at time 1am. The six
gray shaded boxes indicate that at 1am, there has been about 30 minutes of
continuous online activity. The parent of H-Level has an average Reliability of
a peer at that particular day (denotes as D-Level). Depending on the necessity
of applications, numbers of level supports can easily be extended, e.g., month
(denotes as M-Level in Figure 1) or year. Each node of the TM-H structure
except nodes at H-level stores a pair value [Time Tag, Reliability] where the
Time Tag is time object that indicates the time/date where the Reliability is
valid. For example, a node with pair value [1, 0.7] at D-Level indicates that the
peer has 0.7 reliability on Monday (assuming Time Tag = 1 is corresponding to
Monday). All levels other than leaves can be computed from their immediately
lower level. Based on this TM-H model and active, we present how to formulate
the Reliability of a peer.

2.4 Reliability Formulation

We denote
⋃

as an universe of discourse where it denotes the total possible active
gained for a peer p in an hour,

⋃
= {1,...,12}, which is a real number between

1 to 12. Each peer has a minimum 1 active once it has been connected to the
network and maximum 12 active. We define the Reliable characteristic functions
as in equation (1).

μ (x) =
{

0{
1 + [(x − 4) /2]−2}−1

for 1 ≤ x ≤ 4;
for 4 < x ≤ 12; (1)

�p(tm, tn) =
[

n∑
i=m

Ŝ (ti)
]/

(n − m) + 1 (2)

As denoted in equation (1), a peer is considered reliable when its total number

of active is greater than 4 and the equation
{

1 + [(x − 4) /2]−2
}−1

is defined

to measure its characteristic. Let us denote Ŝp(x) = {μ(x)|x ∈ U} as degree of
Reliability of peer p. Hence, when peer is highly reliable, i.e., Ŝp(x) is approaching
1 if and only if the total active is closing to 12. For illustration of the idea, Table
1 shows an example of peer’s Reliability from time T1 to T5. Based on the active,
we can compute the degree of peer’s Reliability at each time. For example, at
time T1, the active is 6, hence μ(6) = Ŝp(6) = 0.5.

We have shown the formulation of peer’s reliability at any single time t pre-
viously. Here we extend it to support multiple time units, we define Reliability,
�p(tm, tn) (equation (2)), of a peer p during time tm to tn as an average possi-
bility that peer remains active and accessible without any interruption between
time tm to time tn where tm = tn. Clearly, if tm = tn,�p(tm, tn) = �p(t). Let’s

Fuzzy Cost Modeling for Peer-to-Peer Systems 143

Table 1. Example of the Reliability values set

Time(Hour) T1 T2 T3 T4 T5
active 6 5 3 7 10
Ŝ(x) 0.5 0.2 0.0 0.7 0.9

consider Table 1 as an example again. The Reliability of peer p during time T1 to
time T5 is computed as �p(T1, T5) = (0.5+0.2+0.0+0.7+0.9)/5 = 0.46. Based
on the formulation of �p(tm, tn) , we can easily compute the reliability at the
parent level. A node in D-Level has the reliability of �p(T1, T24) for all of it
child nodes. Higher levels will take an average of their child �p(t)s.

3 Conclusion

In this paper we have dealt with the problem of remote cost estimation in ad-
hoc P2P network. Cost estimation is crucial for producing an execution strategy
for a query. While most existing approaches are limited to static cost model
or probe-based approach, we proposed a progressive “push-based” remote cost
monitoring approach by using agents. Each agent will be sent to remote hosts
with a generic cost model and epsilons (ε) indicating the acceptable magnitude
of cost changes, i.e., percentage of coefficient changed. An update will be sent
(pushed) to the original host once the magnitude of the cost changes is greater
than ε. Consequently, a query optimizer can have near real-time cost informa-
tion (i.e., cost ±ε) of remote peers without heavily probing for the answer. In
addition, we introduce Time-Hierarchical (TM-H) model to capture the behav-
ior of users usage pattern and formulate a Reliability fuzzy characteristic as an
evaluation criterion to measure the dynamism of peers.

References

1. Kalnis, P., Ng, W., Ooi, B., Papadias, D., Tan, K.: An adaptive peer-to-peer network
for distributed caching of OLAP results. In: ACM SIGMOD. (2002)

2. Ng, W., Ooi, B., Tan, K., Zhou, A.: Peerdb: A p2p based system for distributed
data sharing. In: ICDE. (2003) 633–644

3. Zhu, Q., Larson, P.: Solving local cost estimation problem for global query opti-
mization in multidatabase-systems. In: Distributed and Parallel Databases, vol.(6).
(1998) 373–420

4. Adali, S., Candan, K., Papakonstantinou, Y., Subrahmanian, V.: Query caching and
optimization in distributed mediator systems. In: ACM SIGMOD. (1996) 137–148

5. Du, W., Krishnamurthy, R., Shan, M.: Query optimization in heterogeneous dbms.
In: VLDB. (1992) 277–291

6. Shahabi, C., Khan, L., McLeod, D.: An adaptive probe-based technique to opti-
mize join queries in distributed internet databases. In: Knowledge and Information
Systems 2(3). (2001) 373–385

A P2P Approach to ClassLoading in Java

Daryl Parker and David Cleary

Applied Research Laboratories, Ericsson System Expertise, Cornamaddy Road,
Athlone, Ireland {Daryl.Parker, David.Cleary}@ericsson.com

Abstract. The Classloader has long been one of the key extensibility
points of the Java Virtual Machine architecture. In this paper we propose
a new architecture for remote loading of classes based on the Peer-to-Peer
paradigm. This solution incorporates some novel approaches, addressing
many of the problems inherent in current solutions. We also discuss our
reference implementation of this approach over both traditional TCP/IP
and JXTA based networks.

1 Introduction

Internet file sharing, and similar high profile applications have ushered in a new
era of distributed systems technologies. As business models turn more towards
service driven architectures, the focus is aimed at migrating functionality towards
the edge of the network. The plethora of new high-end Java based terminals
necessitates the need for a new breed of service, capable of displaying the same
characteristics that have made Peer-to-Peer technologies such a success.

A number of questions have been raised regarding the use of today’s dis-
tributed technologies within such a domain. High among these are; static config-
uration, terminal limitations, service provisioning, scalability, redundancy and
the abolition of a centralized architecture.

This paper presents an overview of the various distributed systems technolo-
gies supported by the Java platform, and investigates perceived limitations of
these technologies when applied within a Peer-to-Peer context. We derive a set of
formal requirements for a new distributed class loading mechanism, and with the
aid of UML models a proposed architecture is presented, and various technical
challenges are discussed.

2 Current Class Loading Techniques

The Java language classloading mechanisms can be easily partitioned into two
basic categories; classloading within a single VM, and exchange of classes be-
tween multiple VM’s. The Java platform provides implementations in both cat-
egories, however to understand the motivation behind the work detailed in this
paper, it is important to dissect these mechanisms and their various limitations.

G. Moro, C. Sartori, and M.P. Singh (Eds.): AP2PC 2003, LNAI 2872, pp. 144–149, 2004.
c© Springer-Verlag Berlin Heidelberg 2004

A P2P Approach to ClassLoading in Java 145

2.1 Past and Present Loading Mechanisms

The Java language has matured through two generations of language [1] and vir-
tual machine specifications [2], having undergone radical changes. Classloading is
no exception. Two variants exist; pre and post 1.2 versions. The Java 1.1 model
allowed loading of Java classes from virtually any source, but this flexibility car-
ried the price of complexity. The abstract class java.lang.ClassLoader exposed a
single method; loadClass(). The functionality of the loadClass() method is quite
involved, requiring :

– Checking if the class has been loaded by this or the system loader
– Loading the class from the repository
– Defining and resolving the class
– Returning the new class definition to the caller

The advantage of this mechanism was that the custom classloader always main-
tained complete control over the classloading process, but this model forced the
custom classloader to do all the work for loading a class. Further issues regarding
security and access permissions also exist and are detailed in [3].

Java 1.2 introduced the delegation model for [4], which automatically dele-
gates class loading to the parent. In the event of the parent ClassLoader being
unable to load the class, a new method, findClass(), is called on the ClassLoader
subclass. Thus the custom ClassLoader is responsible for loading only the classes
not accessible by the parent.

While there are advantages to the delegation model, in complete contrast to
the Java 1.1 mechanism the system classloader is given the first attempt to load
the class, only falling back to the custom loader on failure to load the class. This
restricts the usage of the custom classloader, to loading classes only from sources
unknown to the system classloader.

2.2 Remote/Inter-VM Classloading

Java provides numerous mechanisms for loading classes over a network. Java’s
distributed classloading mechanisms, Applets, RMI [5], Jini [6],[7] all rely on the
same basic mechanism, the codebase. A codebase is similar to the classpath; a list
of URL’s pointing to the location of necessary classes. Applets embed the code-
base within the initiating html file, while RMI and Jini use a system property
java.rmi.server.codebase. Details on how the codebase is used by the RMIClass-
Loader can be found at [8]. When attempting to apply these mechanisms within
a Peer-to-Peer domain, a number of considerations must be taken into account:

– Supporting services Rmid, Rmiregistry (RMI) and LookupServer (Jini)
– One or more HttpServers must be running to serve class files
– Explicit packaging of client side code into individual jars
– Static configuration of codebases, security policies, redundancy
– Program towards an explicit set of technology API’s

146 D. Parker and D. Cleary

3 P2P Classloading

Our new P2P classloading mechanism aims to remove static configuration, and
explicit code packaging, while providing network transport independence and
inherently addressing both scalability and redundancy. Fig 2 shows the main
interfaces of our P2P classloader. The main application interface is provided via
the DistributedClassLoader. It overrides a number of methods to provide the nec-
essary logic for our distributed classloader; findClass(), getResourceAsStream(),
findResource() and findResources().

Fig. 1. Peer-to-Peer Classloader architecture class diagram

LocalClassDataProviders load classes from local code sources; files, jars, while
RemoteClassDataLoaders provide mechanisms for loading classes from remote
sources. The RemoteClassDataProvider encapsulates all of the control logic for
remote connection, operating on generic QueryChannel and DataChannel inter-
faces. To provide a new network binding, implementations for the QueryChannel
and DataChannel interfaces must be provided, and the two classes, Distributed-
ClassLoader and RemoteClassDataProvider must be extended.

The P2P classloader first attempts to load the class data using the LocalClass-
DataProviders. If successful the class is defined/loaded and the VM resumes, if
not found, control is passed to the RemoteClassDataProviders which will propa-
gate a request for the specified class data. The details of the propagation mecha-
nism are encapsulated by the QueryChannel implementation provided. A neigh-
boring RemoteClassDataProvider receiving a request, will attempt to load the
class using its own LocalClassDataProviders, however will not re-propagate the
request, thus reducing requests in the network removing the need for loop de-
tection, TTL mechanisms.

Due to the spatial locality of code, the full jar/zip will be sent to the request-
ing RemoteClassDataProvider and buffered, allowing future requests for classes
to be resolved by the LocalClassDataProviders, from the buffer. The system is
inherently fault tolerant, with redundant instances of buffered data residing on
each peer, and displays basic load balancing characteristics, with a larger number
of peers available to serve requests, reducing performance bottlenecks typically
experienced in centralized systems.

A P2P Approach to ClassLoading in Java 147

4 Technical Challenges

One of our design goals required any class files specified on the classpath, a well-
understood mechanism, to be available to our LocalClassDataProviders. If a new
remote class is needed, it will likely be referred to from one of our application
classes, loaded via the classpath by the system classloader. An attempt to load
the remote class will result in the loadClass() method of the system classloader
being called, due to the delegation model, as its the application classes initiating
loader. The system classloader will fail to load the class, never deferring control
to our custom classloader.

Many solutions [3],[4],[9], trim the classpath, or statically configure alterna-
tive sources for use by the custom loader. Others exist [10] that filter the system
classes, based on explicit package names, e.g. java.*, javax.*, explicity configured
during construction of the classloader. Due to the increasing number of previ-
ously optional APIs that are being bundled in the rt.jar and similar bootstrap
packages, we felt this approach would not be adequate

Our solution uses the sun.boot.class.path system property to acquire the boot-
strap classpath used by the VM for system classes, to construct a list of package
names that can be used for the filtering process within our custom classloader. To
ensure the system classloader does not load any application classes, the custom
classloader must override the loadClass() method instead of the usual findClass()
method, to prevent automatic delegation to the parent/system classloader. Alter-
natively a two-stage approach can be used by placing an intermediate classloader
between the system and custom classloader. The intermediate classloader can
do the filtering and delegate to the system or custom classloader as necessary.

ResourceBundles pose a real problem if required from a remote source. Re-
sourceBundles created from a properties file e.g. example.configfiles.config result
in the VM trying a number of combinations. Even if the conifg.properties file
is found, the VM will attempt to find the config_en and config_en_GB files.
Were each attempt made via a remote request an application would endure five
request timeout intervals before continuing.

The ResourceBundle solution is somewhat involved. From the classloader
perspective there is no way to identify that this request is coming from a Re-
sourceBundle.getBundle() call. A naive approach could use a strict naming con-
vention for bundle classes and properties, placing the onus on the developer to
adhere to such a convention. Alternatively a new Throwable could be created
and its stacktrace analyzed to determine if the findClass() is the result of a
getBundle() call, placing prohibitive overhead on the class loader mechanism.

A preferred approach is to take advantage of the overhead involved in per-
forming a remote request in the first place. If the locale information is included
as part of the initial remote request, the remote client can check for all the Re-
sourceBundle combinations. The computational overhead of resolving the per-
mutations on the remote machine is proportionally insignificant to the overhead
of the request. The returned results can be buffered ensuring that subsequent
findClass() and getResourceAsStream() methods invoked as part of the getBun-
dle() don’t require further remote requests.

148 D. Parker and D. Cleary

5 Reference Implementations

This section details our two reference implementations. A new DistributedClass-
Loader must tell the base class which LocalClassDataProviders, and Remote-
ClassDataProviders will be used for the binding. Likewise the RemoteClass-
DataProvider must be informed of the class providing the QueryChannel im-
plementation. All are achieved via the properties: loader.provider.localprovider,
loader.provider.remoteprovider and loader.channel.querychannel. The Tcp/Ip
DataChannel interface is implemented via standard Java sockets. The
QueryChannel uses a java.net.MulticastSocket to broadcast requests, and
a java.net.ServerSocket to accept connections from peers. Requests use
java.net.DatagramPacket objects for transport via the MulticastSocket.

The second reference implementation was based on the JXTA initiative led
by Sun Microsystems [11]. JXTA provides an XML based middleware encapsu-
lating all the basic mechanisms required in a Peer-to-Peer system. It introduces
the concept of Pipes; unidirectional virtual communication channels that can
span multiple peers. Resource discovery is provided by a core JXTA service, the
ResolverService, a providing generic query/response mechanism.

The QueryChannel for the JXTA binding uses the ResolverService to broad-
cast its class requests which are enveloped within the generic ResolverQuery and
ResolverResponse messages. The QueryChannel makes use of the Bidirection-
alPipe class provided by the net.jxta.utils package, to handle the setup of the
pipes in both directions.

The DataChannel implementation requires methods for accessing the Input-
Stream and OutputStream of the DataChannel, neither of which are supported by
JXTA pipes. We decided to implement InputStream and OutputStream adapters
for JXTA pipes, enabling us to extend the capabilities of the Pipe mechanism,
allowing standard Java streams (ObjectStreams, BufferedStreams) to be stacked
on top of JXTA pipes. Fig 5, details the architecture of the adapters and our
read/write byte buffer implementation.

Fig. 2. JXTA Pipe/Stream Adapter

A P2P Approach to ClassLoading in Java 149

6 Conclusions

This paper presented an overview of various Java distributed systems technolo-
gies and highlighted some of the inherent limitations when used within a Peer-
to-Peer domain. Having decomposed these technologies, formal requirements for
a new distributed class loading mechanism were presented and with the aid
of UML diagrams, a proposed architecture was outlined. We further presented
some of the technical challenges faced while implementing the proposed design,
and detailed the solutions employed. In conclusion, the two Reference Imple-
mentations of our proposed architecture are described, illustrating the flexibility
afforded by our design, proving the Peer-to-Peer paradigm to be a valid approach
to solving many of the technology limitations intrinsic to the current generation
of distributed systems architectures

References

1. James Gosling, Bill Joy, Guy Steele, Gilad Bracha: The Java Language Specifica-
tion 2nd Edition Addison Wesley, ISBN 0-201-31008-2, 2000

2. Tim Lindholm, Frank Yellin: The Java Virtual Machine Specification 2nd Edition
Addison Wesley, ISBN 0-201-43294-3, 2002

3. Chuck McManis: The Basics of Java Class Loaders. JavaWorld, October 1996.
http://www.javaworld.com/javaworld/jw-10-1996/jw-10-indepth.html

4. Ken McCrary: Create a custom Java 1.2-style ClassLoader. JavaWorld, March
2000. http://www.javaworld.com/javaworld/jw-03-2000/jw-03-classload.html

5. The java remote method invocation (RMI) specification. Technical report, Sun Mi-
crosystems Incorporated. 1998. http://www.javasoft.com/products/jdk/1.2/docs/
guide/rmi/spec/rmiTOC.doc.html

6. K. Arnold, B. O’Sullivan, R. W. Scheifler, J. Waldo, and A. Wollrath: The Jini
Specification, Addison Wesley, 1999.

7. Suns Jini whitepaper
http://www.sun.com/jini/whitepapers/jini-datasheet0601.pdf

8. Ann Wollrath, Jim Waldo: The Java Tutorial - RMI
http://java.sun.com/docs/books/tutorial/rmi/TOC.html

9. Philip W. L. Fong and Robert D. Cameron:
Java proof linking with multiple classloaders.Technical Report SFU CMPT TR
2000-04, Simon Fraser University, 2000 http://citeseer.nj.nec.com/fong00java.html

10. BCEL, The Byte Code Engineering Library
http://jakarta.apache.org/bcel/manual.html

11. “JXTA v1.0 Protocol Specification”, June 2001
http://spec.jxta.org/v1.0/docbook/JXTAProtocols.html

Multi-agent Interaction Technology for
Peer-to-Peer Computing in Electronic Trading

Environments

Martin Purvis, Mariusz Nowostawski, Stephen Cranefield, and Marcos Oliveira

Department of Information Science, University of Otago, Dunedin, New Zealand
{mpurvis, mnowostawski, scranefield, moliveira}@infoscience.otago.ac.nz

Abstract. Open trading environments involve a type of peer-to-peer
computing characterised by well-defined interaction protocols that are
used by the traders and sometimes updated dynamically. New traders can
arrive at any time and acquire the protocols that are current. Multi-agent
system technology is appropriate for these circumstances, and in this
paper we present an approach that can be used to support multiple trader
agents on multiple computing platforms. The approach involves the use
of FIPA-compliant trader agents which (a) incorporate micro-agents for
specific local tasks and (b) use coloured Petri nets in order to keep track
of the local context of agent conversations. In order to enhance efficiency
and employ standard transport services, the trader agents interact with
peers on other platforms by means of JXTA technology. We illustrate
the working of our approach by examining the operation of an example
multi-agent system in a commodities trading scenario.

1 Introduction

Peer-to-peer computing applications in open economic trading spheres must be
able to interoperate effectively in distributed, heterogeneous, and sometimes
unreliable environments. Multi-agent system technology, wherein agents com-
municate by exchanging declarative statements, has the potential to provide a
robust and scalable infrastructure to support such systems [1]. With agent ar-
chitectures, individual agent participants can be replaced or supplemented by
improved agents, which can enable the overall system to introduce improve-
ments, adapt to changing conditions, and extend the scope of operations to new
domains.

In the international e-business climate, autonomous agents or groups of such
agents from distinct organizations may come together in a competitive environ-
ment and exchange information and services. In order for multi-agent systems to
operate effectively under these circumstances, they must be able to coordinate
their activities with other agents in a satisfactory manner, and this coordination
is accomplished by having suitable interaction protocols between agents. In addi-
tion, the deployed agents must be able to respond rapidly in competitive trading
environments, and so should be developed to employ standard infrastructural

G. Moro, C. Sartori, and M.P. Singh (Eds.): AP2PC 2003, LNAI 2872, pp. 150–161, 2004.
c© Springer-Verlag Berlin Heidelberg 2004

Multi-agent Interaction Technology for Peer-to-Peer Computing 151

P2P services wherever possible. In this paper we describe our approach to the
representation and use of agent interaction protocols and discuss our implemen-
tation that combines the use of standard agent [2] and P2P [3] technology. The
implementation of our approach is demonstrated in the context of a commodities
trading scenario.

2 Multi-agent Systems

Agents must share an understanding of the possible message types and the terms
that are used in their communication. A common approach that has been used
to deal with the potential complexity of these messages is to have messages
represented in a declarative format, with the basic message types limited to
a few standard types and the individual terms used in the message content
represented by an ontology that has been developed for the application domain
of interest [4].

2.1 FIPA Agents

The Foundation for Intelligent Physical Agents Agent Communication Language
(FIPA ACL) has a relatively small set of message types (the Communicative
Act Library [2]) based on speech acts [5]. Examples of FIPA communicative acts
are quite general (such as inform, request, propose, etc.), and the content to
which the general communicative acts refer (e.g. what is being ‘requested’ or
‘proposed’) is contained in the bodies of the messages. The task of understand-
ing the message body containing terms that refer to an ontology can require a
considerable amount of reasoning, but this task can be assisted by employing
conversation policies, or interaction protocols [6], which can reduce the number
of options that need to be considered for appropriate response to an incoming
message. An interaction protocol specifies a limited range of responses that are
appropriate to specific message types when a particular protocol is in operation,
and this is a way of situating a sequence of exchanged messages in a context.
FIPA has produced a short list of specifications [2] for several standard inter-
action protocols, but these are somewhat limited and may not offer sufficient
assistance for many of the potential interactions in which agents are likely to
engage.

Interaction protocols represented in the FIPA specifications focus on the
explicit exchange of information that takes place between the agents, but there
is no concern or representation to assist in the understanding of what is contained
in the body of the message. That kind of task is left to an agent’s own devices and
is not treated by the FIPA interaction protocols. Instead of leaving all of the rest
of what transpires in connection with the interaction outside of the specification
and up to the individual agents, however, we consider it to be advantageous to
consider within the protocol what the other agent is doing with the information.

152 M. Purvis et al.

2.2 Interaction Protocols

Although FIPA uses AUML [7] to represent its standard interaction protocols, we
use coloured Petri nets (CPNs) [8,9], because their formal properties facilitate the
modelling of concurrent conversations in an integrated fashion. The availability
of net analysis tools1 means that it is possible to check the designed protocols
and role interactions for undesired loops and deadlock conditions, and this can
then help eliminate human errors introduced in the design process.

Figures 1 and 2 show

Out

In

Receive
request
result

Result
Fail Done

Start

Send
request

Request
sent

Not-understood
Rec. request

answer

answer

Refuse

Agree
Process
answer

Fig. 1. The Request IP: the Initiator role

our representation of the
FIPA request interaction
protocol. Each interac-
tion protocol is mod-
elled in terms of the in-
dividual agent roles in
the interaction: for each
individual role there is
a separate Petri net.
The collection of indi-
vidual Petri nets associ-
ated with all the relevant
roles represents the en-
tire interaction protocol.

For every conversation, there are always at least two roles: that of the initiator
of the conversation and the roles of the other participants in the conversation.

Figure 1 depicts the

Out

In

Fulfil
request

Result

Fail

Done

Send
not

understood

Not-understood

Receive
request

Request

Refuse

Agree

Process
request

Send
fail

Send
done

Send
result

Send
agree

Send
refuse

Agree
sent

Fig. 2. The Request IP: the Participant role

initiator of the FIPA
request interaction and
Figure 2 shows the Par-
ticipant interaction. For
diagrammatic simplicity,
we omit the inscriptions
from the diagram, but
we will describe some
of them below. The In
place (in this and the
following Petri net dia-
grams) will have tokens
placed there when the
agent receives messages
from other agents. The
In place is a fusion node

(a place common to two or more nets): the very same In place may exist on
other Petri nets that also represent conversations in which the agent may be
engaged. When the agent receives a message from another agent, a token with
information associated with the message is placed in the In place, which may
1 See, for example, http://www.daimi.au.dk/PetriNets/tools/db.html.

Multi-agent Interaction Technology for Peer-to-Peer Computing 153

be shared by several Petri nets. The transitions connected to the In place have
guards on them such that the transitions are only enabled by a token in the In
place with the appropriate qualification. The Initiator of the request interaction
will have a token placed in the Start place, and this will trigger the Send request
transition to place a token in the Out place. We assume that the communication
transport machinery causes tokens to disappear from a Petri net’s Out place and
(usually) a corresponding token to appear in the In place of another agent. The
transfer may not be instantaneous, or even guaranteed to occur; it is possible for
a token to disappear from one role’s Out place without a corresponding token
appearing in another agent’s In place.

Note that the Initiator could be involved in several concurrent request in-
teraction conversations, and the placement of specific tokens in the Agree place
enables this agent to keep track of which responses correspond to which con-
versations. This shows how the coloured Petri net representation facilitates the
management of concurrent interactions involving the same protocol.

3 Electronic Trading Scenario

We consider here a simplified business example that covers some essential issues
but avoids extraneous matters, that is based on the card game Pit2, which is
modelled after commodity trading. In the standard Pit card game, three to seven
players may play and a dealer distributes nine cards to each player from a shuffled
deck of cards. The game comes equipped with a deck of cards, each of which
has a ‘suit’ that represents one of a few commodity types, such as corn, barley,
wheat and rice, and there are nine cards of each commodity type in the deck.
When the game is played, the deck is prepared so that the number of commodity
types in the deck matches the number of players for the given game. When play
begins, the players independently and asynchronously exchange cards with each
other, attempting to “corner” the market by getting all nine cards of any one
type. On any single exchange, they can only trade up to four cards from their
own hands, and all the cards traded must belong to a single commodity type.
Thus if a player has six barley cards, two ‘wheat’ cards and one ‘rice’ card, he
will typically initially attempt to trade away his two ‘wheat’ cards, hoping to
acquire one or two ‘barley’ cards. Trading is carried out by a player (the “bidder”)
announcing, for example, that he has some cards to trade. If another player (a
“trader”) also wishes to trade the same number of cards, the two players may
make an exchange. Whenever a player manages to get a ‘corner’, he announces
that fact to the dealer, and the given “hand” is finished (the protocol shown here
is for a single hand). Players who get a corner in ‘wheat’ (by getting all nine
‘wheat’ cards) get 100 points, a corner in ‘corn’ gets 75 points, in ‘oats’ gets 60
points, etc. The winner of the game is the first player to collect 500 points.

In our implementation of the basic (non-extended) game, trading bids are
sent to the dealer, which, in turn, broadcasts the bids to all the players. Figure 3

2 http://www.hasbro.com/common/instruct/pit.pdf

154 M. Purvis et al.

In

Out

Receive
corner

announcement

Corner
info.

Broadcast
corner

info

Recieve
trade bid

Bid

Broadcast
trade
bid

Start

Cards
sent

Send
start

signal

Send
cards

Fig. 3. The Pit Game interaction protocol for the Dealer role

shows the interaction protocol for the Dealer role. The Dealer deals out the cards
and then sends the “start” signal to all the players (a broadcast message).

The player role is shown in Figure 4. Whenever a player has a hand of cards,
it always checks to see if it has a corner. If so, it announces this to the Dealer,
which, in turn, announces this to the rest of the players, thus signalling the end
of the hand. After players receive the start signal, and assuming that they don’t
have a corner, they can choose to make a bid. They do this by sending their bid
to the Dealer, which in turn broadcasts the bid to all other players. At this point
in the protocol, a token is deposited in the “cards offered” place, identifying the
cards being offered for trade. Whenever an external bid is received, the player
can choose to accept the bid by comparing the bid with its own hand. If the
player accepts the bid, a message is sent to the player (not the Dealer) and a
token is stored in the “cards offered” place. If the trader player subsequently
receives a message from the bidder that its acceptance was rejected (the “Rec
rejec. of trade offer” transition), then it will give up on this potential deal and
restore its offered cards back to the “cards” place.

A trade of cards can take place if a bid has been made and another player
has offered to make a trade matching the bid. Thus if player A has made a trade
offer in response to player B’s bid, and has received an acceptance message
from B that this trade offer has been accepted, then A will send its cards to B
(and expect to receive a corresponding number of cards from B). When a player
receives a trade offer message from another player indicating that its bid has been
accepted, it is stored in the “Accpt.” place. The “Make trade” transition checks
(by means of a guard) to make sure that the accepted bid matches information
in the token located in the “cards offered” place. If so, the cards are sent to
the other player. If the player receives a trade offer that is not applicable (such
as a second trade offer that has come in after it has already decided to trade

Multi-agent Interaction Technology for Peer-to-Peer Computing 155

In
Receive corner

announce

(end)

Rec. bid

Rec.
cards

Rec.
trade
offer Rec. traded

cards

Accpt.

Cards
dealt

Start
play

Out

Cards Corner?

Corner

Bid
rec'd

Offer
trade

Cards
rec'd

Make
bid

Cards
offered

Rec rejec.
of trade

offer

Restore
hand

Make
trade

Notify trade
offer rejected

Bid
timeout

Rec. bid cards
+ send cards

Rej.

Timeout
enabled

Cards
sent

Fig. 4. The Pit game interaction protocol for the Player role

cards with another player that has sent in an earlier trade offer), then the other
player is sent a rejection notice (“Notify trade offer rejected” transition). When
a ‘trader’ receives cards (“Rec. traded cards” transition) the incoming trades are
checked against the token in the “Cards sent” place (the number of cards should
match) and the received cards are placed in the “Cards rec’d” place. When a
‘bidder’ receives cards, it makes a similar check with the token in the “cards
offered” place, sends those offered cards to the other player, clears the token in
the “Timeout enabled” place (see next sentence), and places the incoming cards
in the “Cards rec’d” place. The “Bid timeout” transition is enabled if there have
been no takers of a bid before a certain timeout period has elapsed. When this
transition is fired, the cards are returned to the hand, and the player may chose
to make another bid. Whenever there are cards in the “Cards rec’d” place, the
“Restore hand” transition is enabled and this causes the received cards to be
deposited back in the “Cards” place.

In e-commerce applications, new agents can come and go, so it is necessary
that new participants be informed of the governing interaction protocols in the
trading arena. This can be accomplished if the entire interaction protocol can be
sent to the new player and that new player can then begin to interact according
to that prescribed protocol. In the next section we discuss our implementation
of the interaction protocol scheme and how the dynamic inclusion of new agent
participants is handled.

156 M. Purvis et al.

4 Peer-to-Peer Implementation for Electronic Trading

For our multi-agent implementation, we use Opal [10], a platform for agent-based
development in Java that provides support for the FIPA agent specifications. In-
cluded with Opal is JFern3, a Java-based tool for the enactment and simulation of
coloured Petri nets. When new agents appear and are to be incorporated into the
network of available agents, they are sent a FIPA Propose message by the group
manager with a message content containing an XML encoding of the interaction
protocol that is used. The interaction protocol comprises a coloured Petri net
and the associated ontology, represented in UML, for the terms used in the inter-
action protocol. Both the Petri net and the UML-encoded ontology information
are encoded in XML and sent to the newcomer agent when it joins a group.

4.1 The P2P Pit Game

We have adapted the Pit game to make it more characteristic of a peer-to-peer
environment of autonomous components. The modified game has the same goal
as in the standard game: each player is playing for itself, and is trying to corner
a single commodity. However, there is now no centralized dealer. In addition,
players can leave and join during the game at any time, and new commodities
are generated automatically depending on the current number of players. All
commodities are ordered according to their value, e.g. the first commodity, com1,
has a corner value of 10pts, com2 = 20pts, and so on, in an ascending order.

The maximum number of players that can participate in a game is set to
some high value, N max. In any single game, there are N players playing at the
same time, with N < N max . Each player has N cards, where N cards > N max.
Thus, there are always N commodities in the game, and each commodity has
N cards that are in circulation.4 Since there is no dealer, each player takes on
part of dealer’s responsibilities. That includes keeping track of who is playing the
game, keeping track of all current commodities in the game, and keeping track of
the scores of other players. All that information is synchronized between players
by means of public announcements.

Some cards in the game can be marked inactive, and in such a case they can-
not be used to count towards a corner in the given hand. A player who has inac-
tive cards must exchange them with cards from another player. Once an inactive
card has been traded, it becomes active. When a new player joins a game, it must
ask another player what commodities are being currently used in the game. The
new player will then create a new commodity and a new hand for itself of N cards
inactive cards representing the new commodity. These inactive cards must all be
traded away by the new player, and by so doing so, the inactive cards become
3 http://sourceforge.net/projects/jfern/
4 These rules followed the original Pit Game rules; however, we have noticed that when

a large number (dozens or more) of players are in the game, it can be difficult for any
player to get a corner, and we are investigating a future scoring modification that
would offer proportional rewards to players who have a near corner of the market.

Multi-agent Interaction Technology for Peer-to-Peer Computing 157

active and can be collected as any other cards by any of the players. The cards
are exchanged at random and in an asynchronous manner between individual
players. The maximum number of cards exchanged during a single transaction
is (N cards /2) - 1. All exchanged cards must be of the same commodity type.

To facilitate the mixing of inactive cards from a new player’s hand, a new
rule has been added to the game (‘inactive card demand’): any player can be
requested to provide one or more cards in exchange for another player’s inactive
cards. The requested player may decide how many cards it wants to exchange,
but it cannot refuse the inactive card demand. Apart from this one-round inac-
tive card demand, all inactive cards are exchanged as normal commodities.

A new game starts when a single player creates a group, advertises it, and
creates for itself N cards cards of the lowest priced commodity. All the cards in its
hand are marked inactive. This player sets the group players count, N , to 1, and
records the value of the current highest commodity and lowest commodity. When
a second player joins the group, it is informed of the current number of players in
the group and what is the next commodity price (the second lowest). The newly
joined player creates a hand of this commodity, and marks all its cards inactive.
When a third player joins in, again, the player counter is incremented and a new
commodity set is created. All players are aware of the number of players in the
group, and all know the current highest priced commodity. This is kept up to date
by making public announcements within the group. After the third player joins
the group, cards may be traded, and players can make bids and announcements.

New players can join a playing group at any time during the play. They
simply join the group, ask about the number of players and the highest priced
commodity, create a hand of inactive cards of a new commodity, and start ex-
changing cards with others. Once the player gets a corner, it adds an appropriate
amount of points to its account, marks all the cards in its hand to be inactive,
and continues to play. The player can leave the play just after getting a corner.
This is the only time the player can “retire”.

There are two types of announcements: public announcements, and individual
agent-to-agent messages. The former are done through the underlying network
infrastructure to all the agents in the game. The latter are done between only
two interested parties. This is discussed in more detail in Section 5.

4.2 P2P Pit Game User Interface

A screen shot from the implementation of the P2P Pit game is shown in Figure 5.
Card collections and hands are represented schematically by an ordered list of
commodities with the number of cards in each commodity. So, for example, for
a deck of cards with three commodities and ten cards per hand, a hand that
has four cards of the first commodity, five cards of the second and one card of
the third commodity would be represented by the following list: [04] [05] [01]. A
hand with all ten cards of the third commodity would be [00] [00] [10].

The top window on the left-hand side of the figure represents all the micro-
agents (see below) and micro-agent roles instantiated in the system. Graphical
user interface (GUI) elements which are recognisable by the MainWindow agent

158 M. Purvis et al.

Fig. 5. Software implementation of the P2P Pit game

can be dynamically displayed on the desktop. The top window on the right-hand
side is the GUI for the actual Pit Game agent. It shows all the agents, with their
current progress toward cornering the market, the current hand and the cumu-
lative score obtained so far. The bottom window represents an individual player.
It shows different decision the agents is making, and the current announcements:
bids and trade offers.

5 Implementation Infrastructure

The implementation using the Opal FIPA Platform also includes the KEA5

micro-agent framework [11]. The interaction architecture is shown in Figure 6.
The use of micro-agents allows us to maintain agent-oriented software mod-
elling and implementation on all levels of abstraction. GUI components and
internal processing units, such as the Strategy micro-agent are represented and
implemented as agents and/or roles. At a higher level all players are treated
as individual FIPA agents, which communicate between themselves using FIPA
ACL messages. The player agents delegate particular tasks to appropriate micro-
agents. This approach offers the advantage of reusing components, together with
late dynamic binding between particular roles.
5 http://sourceforge.net/projects/javaprs

Multi-agent Interaction Technology for Peer-to-Peer Computing 159

Player

Peer

Strategy

GUI

Micro-Agents

FIPA ACL
Micro-Agent Communication

Peer

JXTA

Fig. 6. Agent, micro-agent, and JXTA interaction

5.1 JXTA

To facilitate the dynamic discovery of peers on the network and peer-to-peer
messaging, we have used the JXTA infrastructure [3], which is a set of open
protocols that allow any connected device on the network to communicate and
collaborate in a P2P manner. In this paper we show how JXTA peers and JXTA
announcements can co-exist with the notion of agent-to-agent messaging and
FIPA ACL.

The fundamental notion in JXTA is a peer, which represents any networked
device that implements one or more of the JXTA protocols. To send messages to
one another, JXTA peers use pipes, which represent an asynchronous and unidi-
rectional message transfer mechanism used for service communication. Another
important JXTA mode of communication is advertisements, which are language-
neutral metadata structures represented as XML documents and are used to de-
scribe and publish the existence of a peer’s resources. Peers discover resources by
searching for their corresponding advertisements and may cache any discovered
advertisements locally. Each advertisement is published along with a lifetime
that specifies the time availability of its associated resource. Lifetimes enable
the deletion of obsolete resources without requiring any centralized control (an
advertisement can be republished before the original advertisement expires in
order to extend the lifetime of a resource). In particular, a content advertise-
ment describes content that can be shared in a peer group, and we use content
advertisements to provide the notion of “public announcements” within a given
agent group. All Pit game bids are announced for a specific time publicly, and
trade offers are delivered to individual agents over traditional ACL channels.

160 M. Purvis et al.

5.2 Messaging

Messaging at the lowest micro-agent level (for example between the micro-agent
Player and its Strategy sub-agent) is implemented using method calls, and its
semantics is expressed simply by method call signatures. At a higher level micro-
agents employ a limited model of communication, based on the notion of goals,
declarations, and commitments, with the semantics expressed by UML models
of goals and their relationships. At the highest level agents use standard FIPA
ACL augmented with the notion of object-oriented ontologies represented in
UML [12].

We observe, however, that FIPA ACL does not have a notion of an agent
group, and there is no notion of a public announcement to the group. This is
where JXTA plays an important role. We have introduced a special “wrapper”
agent, called a Peer agent. Currently, there is a single Peer Agent for each
JXTA peer (i.e. a single Peer Agent per machine). All the communication be-
tween individual Players and a Peer Agent is done by standard FIPA ACL; but
the communication between Peer Agents, themselves, is performed by means of
JXTA announcements and pipes (i.e. outside normal FIPA ACL messaging). All
public announcements are done via JXTA announcements, and all peer-to-peer
communication, i.e. all the individual agent conversations, are performed using
standard FIPA messaging mechanisms transmitted via the JXTA Pipe infras-
tructure. Thus in the P2P Pit game each agent sends bids over FIPA ACL to the
Peer Agent, which in turn performs multicast messaging on behalf of the agents
(for public announcements like bids). All the public announcements are done in
an asynchronous manner over the standard JXTA content advertisements. Since
the Peer Agent also has a standard pipe for FIPA text-based ACL messaging,
all communication can be considered to be performed over JXTA.

6 Discussion

In the current P2P implementation we have introduced an extra transport layer
between the FIPA agent and the (FIPA-compliant) Transport System. This layer
is provided by the specialist Peer Agent, which intercepts all Pit-related messages
from individual Player agents, and propagates them appropriately for the P2P
environment.

For messages addressed to a single individual agent registered on the local
peer, the Peer Agent simply forwards the message directly to the recipient. If the
receiver is registered on a remote peer, the local Peer Agent passes the message
to that recipient’s Peer Agent, which in turn passes the message down to the
individual recipient. If, however, the original message is a public announcement
(such as a bid), then the local Peer Agent passes the announcement to all locally
registered agents and also passes it to all other Peer Agents, which in turn pass
it down to all their local players. In the current implementation, the Peer Agent
is implemented on a level below the FIPA ACL level, so all its communications
are not based on the FIPA ACL itself, but rather on a proprietary protocol
implemented on our Opal platform.

Multi-agent Interaction Technology for Peer-to-Peer Computing 161

Opal has been built to conform to the FIPA Abstract Architecture (FIPA
AA). The transport protocols in Opal (IIOP and HTTP) have now been ex-
tended to include JXTA. The Transport Service, as specified in FIPA AA, only
provides a communication protocol for ACL messages between two end-points
and consequently does not cover some aspects of communication, such as dis-
covery, multicasts or broadcasts. Since these were needed for our application,
we implemented them using our own proprietary interfaces and protocols. From
this work, we have come to believe that there would be advantages in extending
the basic FIPA AA infrastructure to cover discovery and broadcasts. This would
provide a bootstrapping infrastructure for agent directory data exchange and dy-
namic caching of remote agent directory services. We have not yet implemented
broadcasts in our JXTA-based Transport Service for Opal, because FIPA cur-
rently lacks this notion. But it would be straightforward to do so if a standard
were established. With such an addition, the Pit game public announcement
messaging would be simpler at the agent level, without the necessity of using
proprietary Peer Agents or JXTA wrappers. We believe such an addition to the
FIPA AA would facilitate agent use in P2P applications.

References

1. Jennings, N.R.: Agent-oriented software engineering. In: Proceedings of the 12th
International Conference on Industrial and Engineering Applications of AI. (1999)
4–10

2. Foundation for Intelligent Physical Agents: FIPA specification repository.
http://www.fipa.org/repository/ (2003)

3. Project JXTA Web site. http://www.jxta.org/ (2003)
4. Ontology.org Web site. http://www.ontology.org/ (2003)
5. Searle, J.: Speech Acts: An Essay in the Philosophy of Language. Cambridge

University Press (1970)
6. Dignum., F., Greaves, M., eds.: Issues in Agent Communication. Lecture Notes in

Computer Science, Vol. 1916. Springer (2000)
7. Odell, J., Parunak, H.V.D., Bauer, B.: Representing agent interaction protocols in

UML. In Ciancarini, P., Wooldridge, M., eds.: Agent-Oriented Software Engineer-
ing. Lecture Notes in Computer Science, Vol. 1957. Springer (2001) 121–140

8. Cost, R., Chen, Y., Finin, T., Labrou, Y., Peng, Y.: Using colored Petri nets for
conversation modeling. In [6], 178–192

9. Jensen, K.: Coloured Petri Nets: Basic Concepts, Analysis Methods and Practical
Use, Volume 1: Basic Concepts. Monographs in Theoretical Computer Science.
Springer (1992)

10. Purvis, M., Cranefield, S., Nowostawski, M., Carter, D.: Opal: A multi-level in-
frastructure for agent-oriented software development. Discussion Paper 2002/01,
Department of Information Science, University of Otago (2002)

11. Nowostawski, M., Purvis, M., Cranefield, S.: KEA: Multi-level agent infrastructure.
In: Proceedings of the 2nd International Workshop of Central and Eastern Europe
on Multi-Agent Systems (CEEMAS 2001), University of Mining and Metallurgy,
Krakow, Poland (2001) 355–362

12. Cranefield, S., Purvis, M.: A UML profile and mapping for the generation of
ontology-specific content languages. Knowledge Engineering Review 17 (2002)
21–39

Location-Based and Content-Based Information
Access in Mobile Peer-to-Peer Computing:

The TOTA Approach

Marco Mamei and Franco Zambonelli

Dipartimento di Scienze e Metodi dell’Ingegneria,
University of Modena and Reggio Emilia
Via Allegri 13, 42100 Reggio Emilia, Italy

{mamei.marco, franco.zambonelli}@unimo.it

Abstract. Mobile peer-to-peer computing calls for suitable middleware
and programming models to provide dynamic access to information and
resources in dynamic network environments. In particular, location-based
access and content-based access to information appear two very useful
mechanisms. Here we present how both these two kinds of information
access can be realized via TOTA (“Tuples On The Air”), a novel mid-
dleware that relies on spatially distributed tuples for supporting uncou-
pled and adaptive interactions between application agents. The TOTA
middleware takes care of both propagating tuples across a network on
the basis of application-specific rules and of adaptively re-shaping the
resulting distributed structures accordingly to changes in the network
structures. In particular, the effectiveness of our model will be tested
in providing means for both location-based and content-based access to
information.

1 Introduction

Far from being only a mean to share music over the Internet, Peer-to-Peer (P2P)
computing is likely to be the reference model for next generation distributed
computing. In several information technology scenarios in fact, there appears to
be a drift from the idea of applications accessing a central service provider to
applications creating a web of shared services. One of the most striking example
is Internet-scale data sharing and teamwork, where rather than accessing a cen-
tral data repository or a central workflow management system, users create a
community and share their resource or coordinate directly. These kind of appli-
cation have always been regarded as the killer applications for P2P systems and
while several systems for file sharing have already been widely used [6],[14],[10],
other systems trying to extend P2P methodology to teamwork and computer
supported cooperative work (CSCW) are currently being studied and developed
[13],[15]. More than that, there are new emerging scenarios, like mobile or perva-
sive computing, in which P2P seems to be the only option. In mobile computing
for example, devices with wireless networking capabilities can create dynamically

G. Moro, C. Sartori, and M.P. Singh (Eds.): AP2PC 2003, LNAI 2872, pp. 162–173, 2004.
c© Springer-Verlag Berlin Heidelberg 2004

Location-Based and Content-Based Information Access 163

mobile ad hoc networks (MANET) and then interact directly. This possibility
opens new scenarios where a device by moving in an environment continuously
connects to the other devices or resources that are in its wireless network range,
thus creating an ever changing network of peers with whom to interact. In such
a situation it is rather clear that only approaches that respect the inherent sym-
metry in the network of wireless devices will be successful and the P2P approach
naturally matches this situation. A central issue, in the development of P2P ap-
plications, it to provide peers (i.e. agents) with suitable mechanisms to access
distributed information. In its broader meaning, information access is at the
basis of data sharing, context-awareness (i.e. access to context related informa-
tion), but also interactions (i.e. access to communication partners) whatever, the
application scenario. In particular, it appears like two different methods may be
both useful to retrieve information in dynamic and P2P scenarios:

– Location-based access, where an agent takes advantage of location informa-
tion to access resources within suitable locality constraints (e.g. find all the
printers on this floor, or find the closest gas station);

– Content-based access, where data - are searched and accessed on the basis
of their content rather than on the basis of nodes’ network addresses or
location. For example, in a P2P sensor network, an agent may be interested
to the occurrence of the data named “truck sightings”. The network must
provide means to effectively access these data wherever they happened.

Although, both these access method have been studied, see [20] for location-
based access and [19] for content based access, to the best of our knowledge, a
model addressing both these access methods with common abstractions has not
been proposed before. In this paper we present how to realize both location-based
and content-based access to information, using the abstractions promoted by a
novel interaction middleware called TOTA (“Tuples On The Air”). In TOTA,
all interactions between application agents take place in a fully uncoupled way
via tuple exchanges. However, there is not any notion like a centralized shared
tuple space. Rather, tuples can be “injected” into the network from any node
and can propagate and diffuse accordingly to tuple-specific propagation patterns.
The middleware takes care of tuple propagation by automatically re-adapting
propagation patterns accordingly to the dynamic changes that can occur in the
network (as due by, e.g., mobile or ephemeral nodes). Agents can exploit a simple
API to define and inject new tuples in the network and to locally sense both
tuples and events associated with changes in the tuples’ distributed structures
(e.g., arrival and dismissing of tuples). As we will show in the paper, these
abstractions enable a straightforward implementations of both location-based
and content-based access to information in P2P networks. To realize location-
based access, tuples can take advantage of the fact that their shape is preserved,
by the middleware, despite peers’ movements. In this way a tuple issued to
collect information 10m away from the current location, will correctly perform
its task even if, after injecting the tuple, the peer moves in another location.
To realize a content-based access, tuples’ propagation will be guided by the

164 M. Mamei and F. Zambonelli

content of the information being searched, with the goal of connecting the issuing
peer with all the other peers having relevant information. Using the tuples as
trials, information can be then routed back to the issuing peer. The following
of this paper is organized as follows. Section 2 overviews the key characteristics
of TOTA and report current implementation status. Section 3 introduces the
problem of determining location in a P2P network. Section 4 describes how to
manage location-based information access in TOTA. Section 5 describes how to
manage content-based information access in TOTA. Section 6 discusses related
works. Section 7 concludes and outlines future works.

2 The Tuples on the Air Approach

The definition of TOTA is mainly driven by the above considerations. It gathers
concepts from both tuple space approaches [4] and event-based ones [5] - thus
preserving uncoupling in interactions - and extends them to provide agents with
abstract - simple yet effective - representations of the context. The goal is to
enable specific coordination activities to be implicitly and with minimal effort
realized by application agents, and to be automatically adapted to the dynamics
of the execution scenarios

2.1 Overview

The driving objective of our approach is to exploit a unified and flexible mecha-
nism to deal with both context representation and agents’ interaction, and thus
leading to simpler, and lighter to be supported, applications. In TOTA, we pro-
pose relying on distributed tuples for both representing contextual information
and enabling uncoupled interaction among distributed application agents. Un-
like traditional shared data space models, tuples are not associated to a specific
node (or to a specific data space) of the network. Instead, tuples are injected
in the network and can autonomously propagate and diffuse in the network ac-
cordingly to a specified pattern. Thus, TOTA tuples form a sort of spatially
distributed data structure able to express not only messages to be transmitted
between application agents but, more generally, some contextual information
on the distributed environment. To support this idea, TOTA is composed by a
peer-to-peer network of possibly mobile nodes, each running a local version of the
TOTA middleware. Each TOTA node holds references to a limited set of neigh-
boring nodes. The structure of the network, as determined by the neighborhood
relations, is automatically maintained and updated by the nodes to support dy-
namic changes, whether due to nodes’ mobility or to nodes’ failures. The specific
nature of the network scenario determines how each node can found its neigh-
bors: e.g., in a MANET scenario, TOTA nodes are found within the range of
their wireless connection; in the Internet they can be found via an expanding
ring search (the same used in most Internet peer-to-peer systems). Upon the
distributed space identified by the dynamic network of TOTA nodes, each agent
is capable of locally storing tuples and letting them diffuse through the network.

Location-Based and Content-Based Information Access 165

Tuples are injected in the system from a particular node, and spread hop-by-hop
accordingly to their propagation rule. In fact, a TOTA tuple is defined in terms
of a “content”, and a “propagation rule”. T=(C,P). The content C is an ordered
set of typed fields representing the information carried on by the tuple. The
propagation rule P determines how the tuple should be distributed and propa-
gated in the network. This includes determining the “scope” of the tuple (i.e.
the distance at which such tuple should be propagated and possibly the spatial
direction of propagation) and how such propagation can be affected by the pres-
ence or the absence of other tuples in the system. In addition, the propagation
rules can determine how tuple’s content should change while it is propagated.
Tuples are not necessarily distributed replicas: by assuming different values in
different nodes, tuples can be effectively used to build a distributed overlay data
structure expressing some kind of contextual and spatial information. Propaga-
tion of tuples is not driven by a publish-subscribe schema, as in traditional event
based models, but it is directly encoded in tuples’ propagation rule and, unlike an
event, a tuple can change its content during propagation. The spatial structures
induced by tuples propagation must be maintained coherent despite network
dynamism. To this end, the TOTA middleware supports tuples propagation ac-
tively and adaptively: by constantly monitoring the network local topology and
the income of new tuples, the middleware automatically re-propagates tuples
as soon as appropriate conditions occur. For instance, when new nodes get in
touch with a network, TOTA automatically checks the propagation rules of the
already stored tuples and eventually propagates the tuples to the new nodes.
Similarly, when the topology changes due to nodes’ movements, the distributed
tuple structure automatically changes to reflect the new topology. For instance,
Figures 1 shows how the structure of a distributed tuple can be kept coher-
ent by TOTA in a MANET scenario, despite dynamic network reconfigurations.
From the application agents’ point of view, executing and interacting basically
reduces to inject tuples, perceive local tuples and local events, and act accord-
ingly to some application-specific policy. Software agents on a TOTA node can
inject new tuples in the network, defining their content and their propagation
rule. They have full access to the local content of the middleware (i.e., of the
local tuple space), and can query the local tuple space - via a pattern-matching
mechanism - to check for the local presence of specific tuples. In addition, agents
can be notified of locally occurring events (i.e., changes in tuple space content
and in the structure of the network neighborhood). In TOTA there is not any
primitive notion of distributed query. Still, it is possible for a node to inject a
tuple in the network and have such distributed tuple be interpreted as a query at
the application-level, by having other agents in the network react to the income
of such tuple, i.e., by injecting a reply tuple propagating towards the enquir-
ing node. The overall resulting scenario - making it sharp the analogy with the
physical world anticipated in the introduction - is that of applications whose
agents: (i) can influence the TOTA space by propagating application-specific
tuples; (ii) execute by being influenced in both their internal and coordination
activities by the locally sensed tuples; and (iii) implicitly tune their activities to

166 M. Mamei and F. Zambonelli

T =0

T =1

T =1

T =1

T =2

T =2

T =2

T =2

T =1

T =3

Px
T =0

T =1

T =1

T =6

T =4

T =2

T =2

T =4

T =3

T =5

Px

Fig. 1. (left) Px propagates a tuple that increases its value by one at every hop. (right)
when the tuple source Px moves, all tuples are updated to take into account the new
topology.

reflect network dynamics, as enabled by the automatic re-shaping of tuples’ dis-
tributions of the TOTA middleware. Further details on the TOTA architecture
can be found in [11], the TOTA API and programming model are described in
more detail in [12].

2.2 Implementation

From an implementation point of view, we developed a first prototype of TOTA
running on Laptops and on Compaq IPAQs equipped with 802.11b and Personal
Java. IPAQ connects locally in the MANET mode (i.e. without requiring access
points) creating the skeleton of the TOTA network. Tuples are being propagated
through multicast sockets to all the nodes in the one-hop neighbor. The use
of multicast sockets has been chosen to improve the communication speed by
avoiding 802.11b unicast handshake. By considering the way in which tuples are
propagated, TOTA is very well suited for this kind of broadcast communication.
We think that this is a very important feature, because it will allow in the
future implementing TOTA also on really simple devices (e.g. micro sensors)
that cannot be provided with sophisticate communication mechanisms. Other
than this communication mechanism, at the core of the TOTA middleware there
is a simple event-based engine, that monitors network reconfigurations and the
income of new tuples and react either by triggering propagation of already stored
tuples or by generating an event directed to the event interface. Actually we own
only a dozen of IPAQs and laptops on which to run the system. Since the effective
testing of TOTA would require a larger number of devices, we have implemented
an emulator to analyze TOTA behavior in presence of hundreds of nodes. The
emulator, developed in Java, enables examining TOTA behavior in a MANET
scenario, in which nodes topology can be rearranged dynamically either by a
drag and drop user interface or by autonomous nodes’ movements. The strength
of our emulator is that, by adopting well-defined interfaces between the emulator

Location-Based and Content-Based Information Access 167

and the application layers, the same code “installed” on the emulated devices
can be installed on Personal Java real devices (e.g. Compaq IPAQs) enabled with
wireless connectivity. This allow to test application first in the emulator, then to
transfer them directly in a network of real devices. In order to rend the emulated
scenario as close as possible to the real scenario, devices’ battery consumption
and wireless network glitches have been emulated as well. A simplified applet
version of the TOTA emulator can be accessed and used at our research group
Web site (http://www.agentgroup.unimo.it).

3 Location and Space in TOTA

Before describing how to realize location-based and content-based access in
TOTA, it is fundamental to explain how nodes in a P2P computer network can
be made aware of their spatial location. This information, in fact, is fundamental
in both kind of access methods as we will see in the next sections. By creating an
overlaid, distributed data structure, TOTA tuples intrinsically provides a notion
of space in the network. For instance, a tuple incrementing one of its fields as it
gets far away from the source identifies a sort of “structure of space” defining the
network distances from the source. Moreover, TOTA allows dealing with spatial
concepts in a much more flexible way. Although at the primitive level the space
is the network space, and distances are measured in terms of hops from peer to
peer, it is also possible to exploit more physically-grounded concepts of space.
These may be required by several pervasive computing scenarios in which appli-
cation agents need to interact with and acquire awareness of the physical space.
For instance, if some sort of localization mechanism, whether GSP or beacon-
based triangulation [7], is available to peers, then tuples propagation rules can
also be expressed exploiting the available spatial information. Specifically, one
can bound the propagation of a tuple to a portion of physical space by having
the propagation procedure - as the tuple propagates from node to node - check
in the local tuple space the local spatial coordinates, so as to deciding whether
to further propagate the tuple or not. In addition, one could think at mapping
the peers of a TOTA network in any sort of virtual space. This space, that must
be supported by an appropriate routing mechanism allowing distant peers to be
neighbors in the virtual space (e.g., the normal IP protocol), can then be used
to propagate tuple so as to realize content-based routing policies, as in CAN [18]
and Pastry [21].

4 Location Based Information Access

When dealing with mobile and P2P computing, a key issue is how to effectively
exploit location-based information (e.g., a specific location from which a service
is accessed). This information can in fact provide a notable added value to mo-
bility: for instance, location-dependent yellow-pages could provide users driving
in a city with information on the closest gas station, or with the list of closest

168 M. Mamei and F. Zambonelli

Chinese restaurants, and adapt such information while the users change its po-
sition. These examples are rooted on the concept of location based information
access: an agent uses location information to constrain the scope of requests to
a specific physical location. To realize such kind of location based information
access in TOTA we can envision the following solution: an agent looking for
some information will create a tuple having as content the description of what
it is looking for (e.g. gas station) and having a propagation rule that propagates
the tuple within a specified locality scope. More in detail, the tuple can be pro-
grammed to flood the network following an epidemic communication schema,
but stopping propagating once a specified critical distance (e.g. 1Km) from the
source has been reached. Peers, through the use of the TOTA event interface,
can subscribe to the income of query tuples they can handle (of course, a general
agreement on the syntax and the semantics of queries must be established) and
react to this query tuple accordingly. In particular it must be noted that the
query tuple creates, during its propagation, a data structure that enables the
query recipient to send information back to the enquiring agent. This can be
simply achieved by injecting an answer tuple in the network that propagates
following downhill the query tuple’s val field (see figure 2). It is worth noting,
that the presented approach is adaptive to peer movements, since the intended
shape of the tuples is fully maintained by the middleware.

Query Tuple
C = (description,val)
P = (propagate flooding the
network, until the critical 1Km distance has been reached.
Increase val by the hop distance at every hop, and always store
the tuple in intermediate nodes)

Answer Tuple
C = (description,location)
P = (propagate following
downhill the val of the associated QueryTuple, incrementing
distance value by one at every hop)

5 Content Based Information Access

From another point of view, the utility of an P2P computer network derives
primarily from the data and information it holds (think at sensor networks).
The identity of the individual node that store the data tends to be less relevant.
Accordingly, suitable interaction models and communication abstractions should
be content-based, in the sense they should provide access to information on a
content-basis rather than on the identity or the location of the device in which
information is stored. Here the main issue is how to provide such kind of access
to information avoiding the trivial solution of flooding the network with requests
(i.e. querying all the peers whether or not they have the desired information).

Location-Based and Content-Based Information Access 169

T =0

T =1

T =1

T =1

T =2

T =2

T =2

T =2

T =1

T =2

Px

T =3

T =3

T =0

T =1

T =1

T =6

T =4

T =1

T =2

T =4

T =3

T =5

Px

T =2

T =2

Fig. 2. (left) A TOTA tuple enabling the access to information within a three-hop lo-
cality scope. (right) when the tuple source moves, the locality scope change accordingly,
thus providing an adaptive location-based access.

An effective solution to this problem has been proposed in [19]: in this approach
the particular node that stores a given information is determined by the content
of the information itself (indicated by a list of keywords). Hence all data with the
same general content (i.e. indicated by the same keywords) will be routed to the
same network node (not necessarily the node that originally gathered the data).
This is achieved by having the list of keywords being hashed (via a predefined
hash function) to a particular physical location and by routing the data to node
closest to that physical location. To this purpose a MANET routing mechanism
like GPSR [[9] can be conveniently used. Requests can follow a similar schema: a
request for an information described by a specific list of keywords is sent to the
node at the location indicated by the hashing of the list of keywords. In this way,
information and requests meet in a rendez-vous node within the network without
any kind of flooding being involved. This schema can be easily implemented
within the TOTA middleware. Once nodes have been localized a node wanting
to publish an information will inject in the network the following Info tuple. This
tuple embeds in its propagation rule the GPSR routing algorithm described in
[[9], that basically takes advantage of nodes location to forward packets following
simple Euclidean consideration to bring the packet at every hop closer to the
destination. The destination peer (rendez-vous) is determined applying a proper
hash function (on which all the nodes agrees) to the content of the tuple. The
query tuple to retrieve information follows a similar process, but, other than
being routed to the rendez-vous node, it also creates a structure to route back
information to the enquiring peer. Finally, on each node, there will be an agent
subscribed to the income of query tuples it can handle and that will inject an
answer tuple (see figure 3). It is worth noting that the approach is adaptive to
peer mobility, since tuples are maintained despite changes in network topology,
and it is also robust against peer failure since tuples will be routed to the alive
peer closest to the target location.

170 M. Mamei and F. Zambonelli

(30,60)

(65,80)

(10,60)

(20,25)

(100,45)

(27,100)

(90,75)

(85,20)

(80,50)

(60,10)

H("Hey Jude")=(90,80)

["Hey Jude"]

T =1
T =0

T =2

T =3

(30,60)

(65,80)

(10,60)

(20,25)

(100,45)

(27,100)

(90,75)

(85,20)

(80,50)

(60,10)

["Hey Jude"]

T =1
T =0

T =2

T =3

Fig. 3. (left) Px is looking for the mp3 file “Hey Jude”. It evaluates H(“Hey Jude”)
that results in (90,80). It then send a tuple to that location, that also create an overlaid
structure to eventually route back information once found. (right) the peer closest to
(90,80) receives the tuple and replies with a tuple that follows the trial left by the
previous tuple to reach the enquiring peer.

Info Tuple
C = (data)
P = (propagate using GPSR routing algorithm
to the node closest to coordinates H(data))

Query Tuple
C = (data,val)
P = (propagate using GPSR routing
algorithm to the node closest to coordinates H(data). Increase val
by the hop distance at every hop, and always store the tuple in
intermediate nodes)

6 Related Work

A number of recent proposals address the problem of defining effective interac-
tion mechanisms in mobile and P2P computing scenarios. In particular, location-
based access and content-based access have emerged as very useful interaction
mechanisms and lots of proposals deal with them. Considering location-based
access approaches, [[20] proposes a method to gather contextual information in
a MANET scenario that is quite similar to the one we exploit in TOTA for the
same purpose. There, each peer in the MANET dynamically builds via propaga-
tion a distributed data structure (i.e., a shortest path tree) to gather contextual,
location-sensitive, information from other peers in the network. TOTA is much
more flexible: the possibility of programming propagation rules makes it possible
to express coordination patterns and to drive navigation, other than just gather
contextual information. In addition, TOTA enables the definition of abstract

Location-Based and Content-Based Information Access 171

overlay networks to be exploited for content-based routing. The DataSpace ap-
proach [[8] is centered on modeling the physical space as a collection of spatially
addressable areas (called datacubes). All the computing devices spread in phys-
ical space inhabit these datacubes and are registered in a so called datacube
registry accordingly to their physical location. Devices can be accessed on a
spatial basis: Queries for printers within a specific building are firstly routed
to the datacube associated to the building and then forwarded to those print-
ing devices registered in the datacube registry. The main service provided in
DataSpace is thus location-based access to information and resources. This ap-
proach is very different from TOTA: DataSpace is based on a look-up discovery
and direct communication model. In TOTA, instead, all the interactions be-
tween agents are mediated by distributed tuples, thus promoting uncoupled and
indirect communication model. Moreover TOTA is intended for a broader set
of application rather then only location-based information access. Coming to
content-based access, most of the proposals in the area introduces novel “over-
lay network” architectures, and define the specific algorithms for building such
networks, re-organize them in response to dynamic network changes, and route
data and requests across the overlay network. Some of these proposals focuses
on the problem of Internet-scale peer-to-peer routing (e.g., CAN [[18], Pastry
[21] and Chord [23]), other on more specific P2P scenarios(e.g., GHT [[19] and
INS/Twine [[1]). However, to our knowledge, none of these proposals provide
a configurable framework with which to define and customize the structure of
the overlay network and the associated policy. TOTA can provide this feature
via a simple and intuitive programming model, and can make it possible to de-
fine, say, libraries of tuples with which to implement any needed content-based
policy for data and service access. As a final note, we emphasize that (i) re-
cent approaches in the area modular robots [[22] exploit the idea of propagating
“hormones” across the robot agents so as to achieve a globally coherent behavior
in robot’s reshaping activities; (ii) in the popular simulation game “The Sims”
[[24], characters move and act accordingly to specific fields that are assumed
to be spread in the simulated environment and sensed by characters depend-
ing on situations (e.g., they sense the food field when hungry); (iii) ant-based
optimization systems [[2],[17] exploit a virtual environment in which ants can
spread pheromones, diffusing and evaporating in the environment according to
specific rules. (iv) amorphous computers [[3],[16] exploit propagation of fields to
let particles self-organize their activities. Although serving different purposes,
these approaches definitely share with TOTA the same physical inspiration.

7 Conclusion and Future Works

The TOTA middleware, by relying on distributed tuples to be propagated over
a network as sorts of electromagnetic fields, provides an effective support to sup-
port distributed applications in dynamic network scenarios, as we have tried to
shown via several application examples. Several issues are still to be solved for
our first prototype implementation to definitely fulfill its promises. First, exper-

172 M. Mamei and F. Zambonelli

iments and performance evaluations are needed to test the limits of usability
and the scalability of TOTA, by quantifying the TOTA delays in updating the
tuples’ distributed structures in response to dynamic changes. Second, we must
try to develop more and more applications upon the TOTA middleware to test
the actual effectiveness of the abstractions proposed. Third, we must compulsory
integrate proper access control model to rule accesses to distributed tuples and
their updates.

Acknowledgements. Work supported by the Italian MIUR and CNR in the
“Progetto Strategico IS-MANET, Infrastructures for Mobile ad-hoc Networks”.

References

1. M. Balazinska, H. Balakrishnan, D. Karger, “INS/Twine: A Scalable Peer-to-Peer
Architecture for Intentional Resource Discovery”, Pervasive 2002 - International
Conference on Pervasive Computing, Zurich, Switzerland, August 2002.

2. E. Bonabeau, M. Dorigo, G. Theraulaz, “Swarm Intelligence”, Oxford University
Press, 1999.

3. W. Butera, “Programming a Paintable Computer”, PhD Thesis, MIT Media Lab,
Feb. 2002.

4. G. Cabri, L. Leonardi, F. Zambonelli, “Engineering Mobile Agent Applications via
Context-Dependent Coordination”, IEEE Transactions on Software Engineering,
28(11), Nov. 2002.

5. G. Cugola, A. Fuggetta, E. De Nitto, “The JEDI Event-based Infrastructure and
its Application to the Development of the OPSS WFMS”, IEEE Transactions on
Software Engineering, 27(9): 827-850, Sept. 2001.

6. Gnutella, http://gnutella.wego.com
7. J. Hightower, G. Borriello, “Location Systems for Ubiquitous Computing”, IEEE

Computer, 34(8): 57-66, Aug. 2001.
8. T. Imielinski, S. Goel, “Dataspace - querying and monitoring deeply networked

collections in physical space”, IEEE Personal Communications Magazine, October
2000, pp. 4-9.

9. B. Karp, H. Kung, “GPSR: Greedy Perimeter Stateless Routing for Wireless Net-
works”, Mobicom 2000, Boston, MA, USA.

10. Kazaa, http://www.kazaa.com/en/index.php
11. M. Mamei, F. Zambonelli, L. Leonardi, “Tuples On The Air: a Middleware for

Context-Aware Computing in Dynamic Networks”, 1st International ICDCS Work-
shop on Mobile Computing Middleware (MCM03) Providence, Rhode Island. May
2003.

12. M. Mamei, F. Zambonelli, “Self-Maintained Distributed Data Structure Over Mo-
bile Ad-Hoc Network”, Technical Report No. DISMI-2003-23, University of Mod-
ena and Reggio Emilia, August 2003.

13. MOTION, IST Project, IST-1999-11400, http://www.motion.softeco.it
14. Morpheus, http://www.musiccity.com
15. International Workshop on Mobile Teamwork Support,

http://www.infosys.tuwien.ac.at/motion/mts/
16. R. Nagpal, “Programmable Self-Assembly Using Biologically-Inspired Multiagent

Control”, 1st International Conference on Autonomous Agents and Multiagent
Systems, Bologna (I), ACM Press, July 2002.

Location-Based and Content-Based Information Access 173

17. V. Parunak, S. Bruekner, J. Sauter, “ERIM’s Approach to Fine-Grained Agents”,
NASA/JPL Workshop on Radical Agent Concepts, Greenbelt (MD), Jan. 2002.

18. S. Ratsanamy, P. Francis, M. Handley, R. Karp, “A Scalable Content-Addressable
Network”, ACM SIGCOMM Conference 2001, San Diego (CA), ACM Press, Aug.
2001.

19. S. Ratsanamy et al., “GHT: A Geographic Hash Table for Data-Centric Storage”,
1st ACM Int. Workshop on Wireless Sensor Networks and Applications, Atlanta,
Georgia, USA, September 2002.

20. G.C. Roman, C. Julien, Q. Huang, “Network Abstractions for Context-Aware Mo-
bile Computing”, 24th International Conference on Software Engineering, Orlando
(FL), ACM Press, May 2002.

21. A. Rowstron, P. Druschel, “Pastry: Scalable, Decentralized Object Location and
Routing for Large-Scale Peer-to-Peer Systems”, 18th IFIP/ACM Conference on
Distributed Systems Platforms, Heidelberg (D), Nov. 2001.

22. W. Shen, B. Salemi, P. Will, “Hormone-Inspired Adaptive Communication and
Distributed Control for CONRO Self-Reconfigurable Robots”, IEEE Transactions
on Robotics and Automation, Oct. 2002.

23. I. Stoica, R. Morris, D. Karger, M. Kaashoek, H. Balakrishnan, “Chord: A Scalable
Peer-to-peer Lookup Service for Internet Applications”, ACM SIGCOMM 2001,
San Deigo, CA, August 2001, pp. 149-160.

24. The Sims, http://www.thesims.com

K-Trek: A Peer-to-Peer Approach to Distribute
Knowledge in Large Environments

Paolo Busetta1, Paolo Bouquet2,1, Giordano Adami1, Matteo Bonifacio2,1, and
Francesco Palmieri3

1 ITC-irst – Povo, Trento, Italy
{busetta,gioadami}@itc.it

2 University of Trento – Trento, Italy
{bouquet,bonifacio}@dit.unitn.it

3 Palmieri Consulting – Roma, Italy
francesco.palmieri@tiscali.it

Abstract. In this paper, we explore an architecture, called K-Trek, that enables
mobile users to travel across knowledge distributed over large geographical areas
(ranging from large public buildings to national parks). Our aim is to provide,
distribute, and enrich the environment with location-sensitive information for use
by agents on board mobile and static devices. Local interactions among K-Trek
devices and the distribution of data in the larger environment follow some typical
peer-to-peer patterns and techniques. We introduce the architecture, discuss some
of its potential knowledge management applications, and present a few experi-
mental results obtained by means of simulation.

1 Introduction

In this paper, we explore an architecture, called K-Trek, that supports a form of context-
aware computing. K-Trek enables mobile users to travel across knowledge distributed
over a large geographical area (ranging from large public buildings to a national park).
This is obtained by providing, distributing, and enriching the environment with location-
sensitive information for use by agents on board of mobile and static devices.

Context-aware computing is an area of active research at the very heart of pervasive
computing and ambient intelligence [1], even if a clear focus has yet to emerge (see for
instance the recent [2]). Context-awareness is usually defined as sensitivity to the user’s
state, the environment where she currently is, and the current physical environment [3].
Distinguishing features of our approach with respect to the known literature are:

– our definition of context, derived by applying the formal framework described in [4]
to knowledge management issues, is based on data accumulated and categorized by
each user during an extended period of time. An explicit negotiation phase (which
subsumes traditional feature-based selections based on user preferences or profiling
as particular cases) is used to filter or annotate information given to and left by users
during their movements;

– no long-range, permanent wireless networks or sensors of any kind are involved. In-
stead, we “augment” the environment, as well as mobile devices, with very low cost,

G. Moro, C. Sartori, and M.P. Singh (Eds.): AP2PC 2003, LNAI 2872, pp. 174–185, 2004.
c© Springer-Verlag Berlin Heidelberg 2004

K-Trek: A Peer-to-Peer Approach to Distribute Knowledge in Large Environments 175

easily available hardware for wireless, short range communication. Bluetooth [5]
is our reference technology, but the architecture can be easily adapted to future
standards as they will emerge;

– agents on board of static as well as mobile devices can exploit the users they get in
contact with for transporting information to agents they cannot directly reach.

K-Trek adopts some typical peer-to-peer patterns and techniques. Small peer-to-
peer networks are formed on-the-fly and enable localized, context-aware interactions
among agents. User movement is exploited to provide message transport in the larger
environment, in a way similar to query propagation on some well-known peer-to-peer
networks. This mechanism is effectively a particular form of ad hoc wide area networking
that does not need any permanent long-distance communication infrastructure.

This paper is organized as follows. Next section introduces the concept of context as
intended in the field of distributed knowledge management, and discusses how it can be
applied to represent location-sensitive information. Sec. 3 describes the architecture of
K-Trek. Context awareness in K-Trek is discussed in more detail in Sec. 4. We present,
in Sec. 5, a few application scenarios. We conclude with some experimental results
collected by simulating different scenarios (Sec. 6).

2 Context in Distributed Knowledge Management

In several recent papers, the idea of Distributed Knowledge Management (DKM) was
proposed as a new and promising approach to the design and implementation of systems
for managing knowledge within complex organizations and, in general, in scenarios in
which there is a multiplicity of autonomous knowledge sources [6]. The main idea was
that, over time, different people (or groups of people) produce heterogeneous and partial
views (called contexts) on the information available within an organization, each from
their own perspective (principle of autonomy), and that these views – far from being an
obstacle to management and coordinated action – are a potential source of innovation
and knowledge creation, if suitably managed (principle of coordination). As mentioned
above, this definition of context is a direct derivation of the work on the contextual
reasoning by Giunchiglia and his group [4,7].

Current work on DKM focuses on issues of semantic autonomy and coordination.An
experimental testbed has been developed in a peer-to-peer system called KEx (Knowl-
edge Exchange) [8]. KEx embodies the functionality for developing one or more local
views (contexts) for each so-called K-Peer, and automatically discovering mappings
among contexts using a complex algorithm for semantic matching [9]. In KEx, contexts
are graphs of concepts that are used to index or annotate document bases, data bases, and
in the future Web services. By means of context mappings, a K-Peer user can navigate
through the knowledge available within different parts of an organization by adopting
her own perspective, rather than the perspective of the knowledge’s original owners,
thus facilitating the discovery of documents or services classified according to unfamil-
iar terminology. During this process, the user may also discover new concepts, which in
turn she can use to enrich her own contexts.

The work presented here explores a different direction of DKM, which is closely
related to what is called ambient intelligence. We imagine a scenario in which knowledge

176 P. Busetta et al.

is context-dependent not only because it embodies the (semantic) perspectives of differ-
ent people (as for KEx), but also because (i) it says something about a specific location
of a given environment, and (ii) is physically stored in that location. To understand the
underlying intuition, we suggest an analogy with signs in the physical world, which pro-
vide the intended information only if they are placed in the location in which they were
designed to stay. For example, a sign describing the history of an old building (“This
palace was built in . . . ”) provides useful (and true) information only if it is physically
attached to that building; and a sign indicating a distance of 50 km from Trento provides
true information only if the sign is not moved to another location or to point in the wrong
direction.

3 K-Trek: An Overview

K-Trek is based on three main types of device, called K-Trek devices (Fig. 1):

K-Beacon: a static device (such as an embedded system with integrated Bluetooth
board) which stores contextual information about a specific location (i.e., the location
where it is placed), and can interact in various forms with other K-Trek devices;

K-Voyager: any mobile device – such as a PDA or a last generation mobile phone –
with one or more K-Trek applications on board;

K-Plug: any device with a standard network interface that acts as a gateway between
K-Trek devices and back-end servers.

K-Trek devices communicate via two types of networks, described below:

– K-Trek micro networks, i.e. on-the-fly networks that connect a limited number of
K-Trek devices in a very small geographical area, and

– K-Trek Wide Area Network (K-wan), i.e. a wide-area, message-based, asynchronous
network, where mobile K-Trek devices act as temporary bridges between discon-
nected devices.

K-PlugK-Beacon

K-Voyager

Micro
Network

Back-End Standard Network

Fig. 1. K-Trek: main components

K-Trek: A Peer-to-Peer Approach to Distribute Knowledge in Large Environments 177

3.1 Micro Networking with Localized Resources

The main feature of K-Trek is the ability of setting up “micro networks” on-the-fly, i.e.
networks that cover a very small geographical area (no more than a few tens of meters)
with a limited number of devices and limited bandwidth, without the need for dedicated,
static equipment (wires, routers, access points, or other paraphernalia)1.

Special light-weight message handling agents are responsible for communication
among K-Trek devices in a micro network. The agent tasks include the most basic peer-to-
peer interaction, i.e. discovery. To this end, they periodically broadcast announcements.
For instance, a K-Beacon announcement contains the K-Beacon’s contact information
and a set of short messages, sent by local application agents and directed to the agents on
passing K-Voyagers. The processing of this announcement is discussed later, in Sec. 4.

This discovery-based approach, inspired by peer-to-peer systems2, contrasts with
location-aware systems based on geographical coordinates, commonly adopted with
mobile phones and other wireless networks, for various reasons. First, no location sen-
sor such as a Global Positioning System (GPS) is needed. Second, since there are no
coordinates, there is no need for geo-referencing information to be delivered to users,
as it is commonly required when central services are involved (typically with mobile
phones), or when local applications need to retrieve data already on board of the user’s
mobile device or to access a centralized directory.

Note that, in general, communication happens while the user is moving, thus the time
of contact between two devices can be short. This, and the limitations on bandwidth,
impose strong constraints on the protocols, concerning in particular the frequency of
announcements and the amount of data exchanged. However, these constraints may be
loosened after a careful study of the characteristics of a specific scenario, which may
reveal peculiar user patterns (possibly induced, e.g. by some human-computer interface
mechanism such as a sound that invites the user to look at the screen and thus to slow
down), or may impose a specific behavior (e.g., stopping whenever the K-Voyager signals
that it is in contact with a K-Beacon).

3.2 K-Wan: A Wide-Area Asynchronous Network

The second type of network is what we call K-Trek Wide Area Network (K-wan), de-
signed for certain types of knowledge management applications.A K-wan is a wide-area,
message-based, asynchronous network, where messages may be delivered long after be-
ing posted, and only stochastic guarantees are given concerning their actual delivery,
latency, and the geographical area of distribution. As discussed later, a K-wan exploits
the users’ movements for message transport, thus no special equipment is required other
than what is required to set up micro-networks (that is, Bluetooth boards). A K-wan may

1 As mentioned in the introduction, our reference technology is Bluetooth [5], because it is
suitable to very low-cost, low-power, wireless devices, and it is commonly built into many
last-generation mobile phones and PDAs. What we call a micro network is commonly referred
to as a pico network in Bluetooth; we purposely differentiate our terminology, which refers to
a high-level architecture. The definition of K-Trek device is independent from Bluetooth.

2 The Sweden company Pocit Labs produced a Bluetooth-based peer-to-peer network called
BlueTalk, similar to our micro-network. Unfortunately, they went out of business in June 2002.

178 P. Busetta et al.

remind one of a partial mesh network, where each node is connected to each other node
either directly or by means of other intermediate nodes that act as routers. However, in a
K-wan no routing is possible since user movements are not predictable, thus messages
are broadcasted, adopting a very different propagation strategy than in mesh networks.
This strategy may be improved in future, if some intelligence (including user profiling
and machine learning techniques) is able to predict the future user movements, or in spe-
cific domains where user movements are well known (e.g., devices on board of public
transport vehicles).

The message handling agents implement some micro networking mechanisms in
order to support transport within a K-wan. One of these mechanisms is applied after a
K-Voyager discovers a K-Beacon, as described in Sec. 3.1 above, and consists of two
complementary actions. The first is the downloading of any message addressed to the
K-Beacon that is contained in a dedicated K-wan buffer on board of the K-Voyager; in
other words, a K-Voyager delivers, to the K-Beacons it gets in contact with, anything
addressed to them that was picked up during its trip. Conversely, the second action
is uploading messages onto the K-Voyager, sent from the K-Beacon and addressed to
agents running remotely.

The second mechanism needed by K-Wan is applied between K-Voyagers. The an-
nouncement mechanism of Sec. 3.1 enables K-Voyagers to discover each other; this
is followed by the exchange of the contents of their K-wan buffers, in a truly peer-to-
peer fashion. At the end of this process, any message addressed to either of the two
K-Voyagers is delivered to the appropriate agent and discarded from both buffers (since
it reached its destination), while all others are duplicated.

This buffer content exchange happens whenever two users carrying K-Trek devices
get close by, without any human involvement. This effectively implies that messages
spread around the geographical area covered by moving K-Trek users as a sort of benign
– but highly infectious – virus. Various mechanisms – such as setting expiration dates
on messages, maintaining lists of those already delivered, managing buffer overflows
– keeps things under control. However, a number of questions arise, e.g. what buffer
size is required, what is the probability of reaching the destination, which geographical
area is covered; the answers are affected by many factors, the most important being the
pattern of movement of users. We return on this topic in Sec. 6.

The last major micro networking mechanism used by a K-wan involves the third
type of K-Trek device, K-Plugs. A K-Plug can be any device (e.g., a personal computer
or a Bluetooth access point) with a standard network interface that acts as a gateway
between devices on a K-wan and back-end servers. To this end, all K-Plugs provide
access to a single, centralized mailbox service. When a K-Voyager gets within the range
of a K-Plug, a set of peer-to-peer protocols similar to those presented above are used to
deposit messages for agents on back-end systems, and to pick up messages addressed
to the K-Voyager (or its user) and for other K-Trek devices; the first are immediately
delivered to their destination agents, while the others are deposited in the K-wan buffer.

We expect that more than one K-Plug are part of a K-wan. Ideally, they should be
located in places where, sooner or later, most if not all users pass by.3 In situations where

3 For this reason, and to reduce the amount of circulating messages, a K-Trek administrator may
configure K-Plugs so that K-Voyagers can pick up messages for themselves and for K-Beacons,

K-Trek: A Peer-to-Peer Approach to Distribute Knowledge in Large Environments 179

the paths followed by users can be predicted, messages for a K-Beacon K are distributed
only by the K-Plugs along the paths that touch K. Since message duplications are likely
while delivery cannot be guaranteed, care is taken in the mailbox administration, for
instance by making sure that messages for K-Beacons are not removed until expired or
requested by their senders (possibly after an application-level handshake).

Finally, a note on security. To the usual security problems of wireless environments, a
K-wan adds something of its own because of its virus-like message transport mechanism.
For instance, if no care is taken, a denial-of-service attack could be easily performed
by somebody generating many apparently innocent messages with very long expiration
dates. Thus, the K-wan buffer management is a particularly sensitive issue.

A K-wan is particularly suited to cases where low-power embedded systems dis-
tributed on a large territory need to perform occasional exchanges of non-critical data
(e.g., collecting data from sensors detecting animal or tourist movements in a national
park). These scenarios currently require either expensive links (such as microwaves or
satellite), or people physically going to each device for uploading and downloading data
via floppy disks or other media. As shown in the examples in the concluding section of
this paper, a careful analysis can predict the performance of a K-wan with some preci-
sion. To this end, we have developed analysis tools that can be used to set up a K-wan
so that any required level of performance (e.g., maximum time for delivery) is achieved,
thus making a K-wan appealing for a large number of application scenarios.

4 Context-Sensitive Mobile Applications in K-Trek

Our first objective is to enable the exchange of contextually relevant information among
the K-Trek devices temporarily connected in a micro-network. Context here is used in
two distinct senses:

1. Context as location: This is the more traditional sense of context in context-aware
applications. However, K-Trek supports a particular form of location-awareness,
where the “location” is determined not by geographic coordinates but by the co-
presence of other K-Trek devices (e.g., a meeting can happen anywhere as long as
all the required participants are present);

2. Context as perspective: Context here is used in the same sense of DKM, and refers
to the conceptual graphs mentioned for KEx. In the simplest case, a context is
nothing more than a set of labels indicating features or user preferences, possibly
enriched off-line with linguistic information from thesauruses or data bases such
as WordNet [10]; the context mapping mentioned for KEx is reduced, for devices
with limited capabilities, to plain label matching. Whenever a micro-network is
established, K-Voyagers discover whatever resources are available on other K-Trek
devices, attempt to perform mappings between the contexts they have on board and
those on board the others, and act consequently (e.g., they may report on the findings
to their users). Context-sensitivity is achieved by “augmenting” the environment
with K-Beacons, with their own contexts on board, representing or annotating local

but not for other K-Voyagers. Other distribution-limiting parameters are also available to the
administrator.

180 P. Busetta et al.

information such as data generated by local sources (typically on embedded systems)
or information left by other mobile devices.

Application agents running on a K-Voyager are associated to one or more contexts.
By operating on the K-Voyager’s GUI, the user decides which applications, and which
contexts, to keep active. This means that user gets only information relevant to her at
that particular time at that particular location – which is to say, a K-Voyager is context-
aware as commonly meant [3]. Since the interaction is two-way, also data flowing from
K-Voyagers to K-Beacons can be annotated with contextual information, so agents on
the static device can get additional information on mobile users and possibly select only
that information that is of their interest.

User contexts can be edited by users; this is a typical off-line process, better per-
formed on a more convenient platform than a mobile device, e.g. a PC. Similarly, contexts
on board of K-Beacons are typically edited off-line and downloaded by a system config-
urator. In the future, it is foreseeable that contexts may be acquired semi-automatically
by K-Trek devices themselves, e.g. in a mixed-initiative process where some of the in-
formation collected by a K-Voyager during a trip is suggested to the user for addition to
her contexts.

In the following, we illustrate the interaction of a K-Voyager with a K-Beacon; the
same pattern applies when interacting with K-Plugs or other K-Voyagers. When the
message handling agent on board of the K-Voyager receives a K-Beacon announcement,
it performs a discrimination of the content, then a first type of context-sensitive process-
ing. Application messages addressed to a remote system or to a different K-Voyager are
stored in the K-wan buffer; their processing has been discussed above. The others (i.e.,
those addressed to either anybody or specifically to this K-Voyager) are filtered against
the user contexts. As mentioned above, currently this process is limited to little more
than plain matching between the labels in the contexts and those on the messages; we
expect, in a not-too-distant future, to be able to perform something more sophisticated,
up to the full context mapping of KEx (Sec. 2).

Eventually, the messages left after filtering are delivered to their destination agents.
Typically, these messages are further application-specific announcements or local infor-
mation to be shown to the user.Apart from those described in Sec. 3.2, further interactions
between K-Beacon and K-Voyager are driven by the application agents, for instance to
retrieve or deposit data or obtain services from K-Beacon agents. Since a K-Voyager
may fall within reach of multiple K-Beacons, application agents must be able to handle
simultaneous interactions.

5 Distributed Knowledge Management Applications on K-Trek

Most things that one can imagine doing in the physical world by putting a sign, leaving a
mark, depositing a form in a mailbox, attaching a “post-it” card, and so on, can be done
electronically with K-Trek, with the exception of those actions that require knowledge
of the exact location and direction of the user (e.g., direction-giving relative to the user
position, such as “move for 20 meters on your left and you will see the Colosseum”,
cannot be supported without additional sensors).

K-Trek: A Peer-to-Peer Approach to Distribute Knowledge in Large Environments 181

Looking at K-trek from a broader knowledge management perspective, its architec-
ture is suitable to situations in which:

– the physical environment is populated by objects whose value can be increased by
either delivering to, or collecting information from, other objects or users;

– linking these “informative” objects by means of an information network based on
long-distance wireless connections is unfeasible, because of costs or environmental
constraints;

– mobile actors in the environment need to locally exchange information either with
informative objects or with other actors;

– mobile actors move across the environment along paths that, statistically, connect
all the informative objects;

– an environment administrator has an interest in enhancing the environment through
the provision of infrastructural services;

– there may be external actors that have an interest in “owning” the informative pro-
cesses related to one or more objects.

A first example of potential K-Trek enabled environment is natural parks and, in gen-
eral, geographically dispersed entertainment environments such as archaeological sites.
Parks are populated by objects such as natural attractions, routes or historical sites whose
value can be enhanced if they are able to exchange information with users, other objects,
the administrator, or the “owner” of the site (an entity that has an interest in updating
and collecting the information that belong to the site). For example, a historical site may
receive information: from a school of architecture in order to update its description; from
a visitor that wants to leave a message to those that will visit the site in future (“virtual
post-it”); and, from a member of the maintenance staff that has periodically to asses
its status. Conversely, the site can provide: architectural information to a visitor whose
context shows an interest in architecture; maintenance information to inspectors, previ-
ously deposited by members of the maintenance staff; and, information about number
of visits, type of users and the kind of information they deposit on the site to the park ad-
ministrator. Visitors and maintainers unintentionally provide the “lazy” communication
channel needed to ensure information delivery, update, and collection by K-wan.

Another scenario involves field management activities of geographically distributed
industrial settings. Relevant objects are industrial sites or components (power stations,
junction boxes, and so on) that generate information about their status and collect infor-
mation about those maintenance activities that must be performed and assessed in site.
Here, since the certainty of information delivery and collection is more critical, main-
tenance visits are intentionally scheduled not just as a function of each maintenance
task, but also for enabling the circulation of information across the overall system. For
example, maintainer A that has to visit and asses the status of site 1, has a route that
passes in front of site 2 whose maintenance is under the responsibility of the maintainer
B. In such case, A deposits his visit report on site 1 and automatically collects the visit
report of B done on site 2. The latter will be delivered to the environment administrator
whose task is to monitor the overall system.

The scenario above provides an example on how K-wan can handle certain levels of
information criticality when the administrator is able to exploit the value of predictable
“visit paths” in terms of connections that will happen with a known frequency and with a

182 P. Busetta et al.

known level of reliability. Another good example is represented, in a urban environment,
by mailmen that, in addition to their usual task of mail delivery, might deliver to and
collects updates from those K-Beacons that are positioned on their typical routes.

In summary, the peculiarities of K-wan make it useful for specific – but not at all
uncommon – classes of applications, the most important being the non-real time (“lazy”)
monitoring and control of large territories. For instance, the application domains men-
tioned above would benefit from the collection of statistics (e.g., on tourists’preferences,
on the state of natural resources), of summaries of notes or forms left locally by passing
users (e.g., tourist satisfaction forms), of data coming from embedded processors (e.g.,
usage statistics of industrial equipment). K-wan supports this kind of data collection
at a much lower cost than networks requiring direct connection between data source
and destination, including WiFi (IEEE standard 802.11b) and GSM/GPRS (used by cell
phones), both in terms of infrastructure and power consumption. The same is true for the
lazy distribution of data or configuration parameters (even software) from a centralized
place to users or K-Beacons.

It is worth to stress again that the annotation of messages with information taken
from the originating agent’s contexts helps in performing typical knowledge management
tasks, varying from the ability to support communities of mobile users to classical data
mining processes such as understanding tourists’ interests, identifying patterns of visit
per user category, and so on.

6 Quantitative Studies on K-Wan

Before deploying a knowledge management solution, even before developing any soft-
ware for K-Trek, we deemed it necessary to assess the characteristics of a K-wan and
to define a set of criteria for network design. This is a very complex task, because a
large number of factors influence the network behavior: for instance, the number of
mobile users, their patterns of movements, the number and location of K-Beacons and
K-Plugs, the size of the K-wan buffers, the lifetime of messages. The general question
to be answered can be formulated as follows: given a certain configuration, what is the
probability that a message reaches its destination within a given timeframe? or, equiva-
lently, which factors should a network designer focus on, so that messages are delivered
on time with a given probability (possibly 100%)?

The most effective way to answer this question seems to be simulation. For our initial
studies, we adopted a multi-agent simulation tool, called NetLogo [11] – easy to use,
ideally suited to classroom experiments but not adequate to complex scenarios analysis;
that notwithstanding, it revealed to be enough for our objectives. Ultimately, our aim
is to build a library of models that cover a reasonable large number of situations, and
use it as a design tool for a K-wan. In the following, we discuss two simple models and
present some of the collected results.

Objective of our first model was to understand if we could identify any correlations
among a selected set of parameters on a relatively small scale scenario. The model has
not been thought with reference to any specific domain. A grid of roads, whose overall
size and density was controlled via parameters, was randomly generated and a set of
travelers with K-Voyagers scattered over them. Travelers followed random walks at a

184 P. Busetta et al.

recreated a partial and slightly simplified map of the town center of Trento, Italy, roughly
corresponding to a square whose side is 600 mt long. This historical center features a
thick network of roads, fairly typical of medieval towns, open to pedestrians only. We
assumed that Bluetooth devices can communicate at a distance of up to 30 mt, which
experiments show to be a conservative estimate in open spaces. Mobile users crossed
the mapped area following a random walk at a speed of 5 km/h; also, they could stop
anywhere for a while, or leave and come back later. On average, a mobile user stayed
within the area for an hour. We put 4 K-Plugs at the corner of busy streets. Twenty food
outlets (restaurants and cafes) advertised their presence with K-Beacons. Similarly to
the previous model, these K-Beacons periodically sent messages to K-Voyagers or to
back-end applications (thus, delivered to any K-Plug).

In our reference application, a message contains the address of the outlet owning the
sending K-Beacon and a note left by a passing tourist with a K-Voyagers; a note could
contain remarks on the outlet, a suggested meeting location, a satisfaction form for the
tourist office. A note can be sent either to another K-Trek user (that is, to a K-Voyager),
or to an Internet email account (by means of an e-mail server, i.e. via a K-Plug).

For our simple model, we assumed that every K-Beacon had always two messages
to deliver. A new message was generated when one expired. The number of mobile users
was constant over time. Message destinations were chosen randomly in a set formed by
the K-Voyagers plus 4 e-mail addresses; for instance, given 96 users, there was a 4%
probability that a message had to be delivered to the e-mail server via a K-Plug. We set
the K-wan buffer size to 50% of the number of circulating messages, i.e. 20. Our goal
was to determine the probability that a message reached its destination, as a function of
its lifetime and the number of mobile users.

The graph on the right of Fig. 2 summarizes the results we obtained after simulating
a 12 hours period by discrete cycles corresponding to a simulated period of 10 seconds
each. It can easily be seen that the message lifetime, which varied between 15 minutes
and two hours, not surprisingly had an important impact. After analysis, we found out
that undelivered messages were for K-Voyager users that left the area too soon to be
reached, while e-mails were always delivered (apart from unrealistic cases of very short
lifetime, not shown in the table). The number of mobile users has an important influence,
too, in a slightly surprising way. Indeed, with high density, messages lifetime decreases
its importance, indicating that messages spread around more quickly than with lower
densities; still, the best case has been achieved with a relatively low number of K-
Voyagers. The reason seems to be the buffer size - indeed, the quicker messages spread
around, the higher the chance of buffer overflows (our management policy is FIFO). For
our reference application, we consider these results satisfactory.

7 Conclusions

We have introduced an architecture, called K-Trek, that provides context-sensitive in-
formation to mobile devices and “lazy” distribution of data over a wide area network.
K-Trek adopts some typical peer-to-peer communication patterns. No location sensor
is required; commonly available short-distance communication hardware (Bluetooth to-
day, and emerging standards in future) is exploited. Data exchange, both local and long-

K-Trek: A Peer-to-Peer Approach to Distribute Knowledge in Large Environments 185

distance, is much cheaper than in wireless networks such as WiFi and GSM/GPRS, both
in terms of required hardware and power consumption. K-Trek is suitable to situations
where the deployment of a large scale infrastructure faces serious constraints in terms of
cost, environmental impact, or geographical coverage; we have presented a few applica-
tion domains showing these characteristics. Simulations have focused on the reliability
of long-distance communication, and have shown the effectiveness and limitations of
K-Trek for this purpose. Future work will be directed at practical experimentation in
real world cases.

References

1. Ducatel, K., Bogdanowicz, M., Scapolo, F., Leijten, J., Burgelman, J.C.: Scenarios for ambient
intelligence in 2010. Technical report, Information Society Technologies Programme of the
European Union Commission (IST) (2001) http://www.cordis.lu/ist/.

2. Abowd, G.D., Ebling, M., Hunt, G., Lei, H., Gellersen, H.: Context-aware computing. IEEE
Pervasive Computing 1 (2002)

3. Schilit, B., Adams, N., Want, R.: Context-aware computing applications. In: IEEE Workshop
on Mobile Computing Systems and Applications, Santa Cruz, CA, US (1994)

4. Ghidini, C., Giunchiglia, F.: Local Models Semantics, or Contextual Reasoning = Locality +
Compatibility. Artificial Intelligence 127 (2001) 221–259

5. Bluetooth SIG, I.: The Official Bluetooth Wireless Info Site (2002)
http://www.bluetooth.com/.

6. Bonifacio, M., Bouquet, P., Traverso, P.: Enabling Distributed Knowledge Management.
Managerial and Technological Implications. Novatica and Informatik/Informatique III (2002)

7. Benerecetti, M., Bouquet, P., Ghidini, C.: Contextual Reasoning Distilled. Journal of Theo-
retical and Experimental Artificial Intelligence 12 (2000) 279–305

8. Bonifacio, M., Bouquet, P., Mameli, G., Nori, M.: KEx: a peer-to-peer solution for Distributed
Knowledge Management. In Karagiannis, D., Reimer, U., eds.: Fourth International Con-
ference on Practical Aspects of Knowledge Management (PAKM-2002), Vienna (Austria)
(2002)

9. Bouquet, P., Serafini, L., Zanobini, S.: Semantic coordination: a new approach and an ap-
plication. In Sycara, K., ed.: Second International Semantic Web Conference (ISWC-03).
Lecture Notes in Computer Science (LNCS), Sanibel Island (Florida, USA) (2003)

10. Fellbaum, C., ed.: WordNet: An Electronic Lexical Database. The MIT Press, Cambridge,
US (1998)

11. Wilensky, U.: NetLogo (1999) http://ccl.northwestern.edu/netlogo/.

Improving Peer-to-Peer Resource Discovery
Using Mobile Agent Based Referrals

Prithviraj(Raj) Dasgupta

Department of Computer Science
University of Nebraska, Omaha, NE 68182.

pdasgupta@mail.unomaha.edu
Phone: (402) 554 4966, Fax: (402) 554 3284

Abstract. A peer-to-peer(P2P) system consists of a decentralized,
distributed network of nodes that is capable of sharing resources
and services without centralized supervision. A major functionality
in P2P networks is locating resources or services present on remote
nodes. Traditional techniques for resource discovery include blind
searches among the nodes using query flooding, or, positioning resources
strategically to enable rapid lookup using distributed hash tables. In
this paper, we propose a mobile agent based referral service that directs
resources queries intelligently towards the nodes possessing the resource.
The mobile agents adaptively learn paths called trails within the P2P
network to enable rapid location of resources. Preliminary results of
our algorithm demonstrate that the agent based technique performs
favorably with existing P2P resource discovery protocols.

Keywords: Peer-to-peer systems, mobile agents, intelligent resource
discovery, multi-agent learning, rumor-mongering.

1 Introduction

The rapid growth of the Internet over the past decade has enabled several tech-
nologies for online human interaction. Users of the World Wide Web can ex-
change information in different formats including text and multimedia using
different devices ranging from wireless mobile devices to desktop computers.
User interaction across a variety of applications and devices requires that the
software processes enabling the communication should be able to interact and
exchange resources and information with each other as peers. Peer-to-peer(P2P)
systems are becoming an attractive computing paradigm to share resources in a
heterogenous environment of connected users.

P2P systems comprise an overlay network where the nodes can interact and
share resources with one another. Since every node is a peer and there is no
central controlling authority, the system is decentralized and distributed. This
makes P2P networks attractive for connecting thousands of users without worry-
ing about scalability and centralized control issues. However, the distributed na-
ture of the network also makes it difficult to locate resources. The most common

G. Moro, C. Sartori, and M.P. Singh (Eds.): AP2PC 2003, LNAI 2872, pp. 186–197, 2004.
c© Springer-Verlag Berlin Heidelberg 2004

Improving Peer-to-Peer Resource Discovery 187

resource discovery protocols in P2P networks are query flooding and distributed
hash tables(DHT). However, flooding generates excessive network traffic while
DHT-s require additional overhead for distribued updates. The traditional P2P
resource discovery protocol can be improved if a node initiating a query has an
idea of where to look for resources without maintaining a distributed hash. In
this paper, we propose an intelligent agent based mechanism where a query is en-
capsulated in a mobile agent that gets forwarded in the direction of the resource
aided by referrals given by the nodes it visits, until the resource is located. Both
referrals given by nodes and trails followed by mobile agents within the P2P
network are adaptively learnt to enable rapid discovery of resources. Simulation
results of our agent based resource discovery algorithm shows that it compares
favorably with traditional P2P resource discovery techniques.

2 Peer-to-Peer Network Protocols

A P2P system is a decentralized and distributed network of nodes that is capable
of sharing and distributing resources between themselves. The primary objec-
tive of a node in a P2P network is to search and acquire resources and services
available on other nodes in the network and, simultaneously allow other nodes
to access resources present on the node itself. For this every node uses a node
discovery protocol to determine other nodes in the network and a resource dis-
covery protocol to determine resources on other peer nodes. The node discovery
protocol consists of two messages. A newly joined node sends out a ping message
to probe and discover other nodes in the network. Existing nodes that receive
the ping message and willing to have the new node as a neighbor respond with a
pong message. After a node becomes aware of its peer nodes it uses the resource
discovery protocol to discover resources that are possibly present on those peers.
The resource discovery protocol comprises the query message that is forwarded
to successive peers until the resource is discovered or the lifetime of the message
expires. If the resource is found on a peer node a queryHit message is sent back
from the node containing the resource to the node that originated the query. The
requesting node and the providing node then decide on the download protocol
for the resource.

2.1 Informed Search in a P2P Network

The traditional resource discovery P2P protocol performs an uninformed search
for a resource within the network. A significant performance improvement can be
obtained if the resource discovery protcol can be provided with a heuristic-based
informed search. Software agents provide a suitable paradigm for implementing
an informed search mechanism in a P2P network. An agent is a piece of soft-
ware code that can continue to execute the actions programmed into it without
continuous supervision by a central authority. In the next section, we describe a
multi agent based framework for implementing the protocols in a P2P system.

188 P. Dasgupta

3 Agent Framework for a P2P System

An agent enabled P2P system must implement the basic P2P protocols described
in Section 2. In addition, the agents can be used to perform computations that
improve the efficiency of the basic P2P protocols. Our first step in this research
was to design and implement a multi-agent based system to support the tradi-
tional P2P node and resource discovery protocols. A peer node is implemented
as an agent server running on a particular port within a computer. The agent
server is capable of hosting agents and sending and receiving mobile agents from
other nodes. Each agent server contains a stationary Controller Agent and a
stationary Information Agent. The controller agent creates and manages other
agents for the node and also interacts with the user through a GUI while the
information agent provides an interface to the information contained within the
node to other agents visiting the node.

The node discovery protocol is implemented using the mobile Reconnais-
sance Agent. The traditional node discovery protocol uses a flooding technique
to discover other nodes. In [4] we have described a gossip based controlled flood-
ing algorithm where the reconnaissance agent uses an incentive driven model to
selectively discover addresses during the node discovery protocol.

The resource discovery protocol is implemented in our system using the mo-
bile Search Agent. The traditional resource discovery protocol uses a blind search
where the query, encapsulated by the search agent, gets flooded across the net-
work until the resource is located or the search boundary is reached. We envisage
that the resource discovery protocol can be significantly improved if the search
agent performs a heuristic based informed search among the nodes of the P2P
network. However, informed search in a P2P network is complicated because the
topology of the network and availability of resources can change dynamically as
nodes join and leave the network. In the next section we describe an adaptive
learning algorithm used by search agents for improving the traditional resource
discovery protocol in a multi-agent P2P system.

4 Intelligent Resource Discovery Using Mobile Agents

Our intelligent resource discovery protocol is inspired by the foraging activity
used by social insects such as ants [2] to locate food sources. In several ant
species, ants searching for food leave behind a pheromone trail along the path
from their nest to the food source. Ants searching for the food source later on use
the trail as positive reinforcement to lead themselves to the food source. Ants
also show a high affinity to an established trail and are reluctant to deviate to
trail-less but more efficient paths towards the food source even if one exists.

In our intelligent resource discovery algorithm mobile search agents mimic
the actions of ants. When a P2P network is initially established there is no
trail information. A search agent dispatched along a trail-less path is called a
foraging search agent. The foraging search agent performs a blind search for a
resource and establishes a trail. Later search agents called follower search agents

Improving Peer-to-Peer Resource Discovery 189

can utilize the trail to discover resources. However, resource discovery in P2P
networks is different from the foraging in an ant society in the following ways:

– Heterogenous Resources. Ants always discover the same resource; viz.,
food. However, in a P2P network the characteristics of the resource being
searched for, such as the resource name and resource type, are specified by
the user’s query. Therefore, trails can only be used to direct a search agent
towards nodes where resources have been previously located. However, the
same trail should not be followed repeatedly because it is unlikely that all
resources will be present at the same node.

– Occasional Foraging. Although positive feedback from the pheromone
along a trail reinforces the affinity of ants towards the trail, it prevents them
from discovering more efficient routes. Occasional explorations or forages
along trail-less paths can sometimes lead to the discovery of more efficient
routes.

– Reliability of Trail Information. A P2P network is a decentralized envi-
ronment where it is difficult to authenticate every node. Malicious nodes can
try to divert search agents along incorrect trails to sabotage the network.
Therefore, before deploying a search agent along a trail, the trail information
should be associated with parameters such as reputation or reliability of the
node that originates the trail information.

– Variable Resource Location. In ant algorithms, the location of the food
source is fixed. However, in P2P networks the location of resources can
change with time as existing nodes leave the network and new nodes with
new resources join the network. Therefore, the foraging and trail-following
behavior should be combined into the route taken by a search agent.

The characteristics of the resource discovery protocol in P2P networks men-
tioned above imply that a trail laid by a foraging search agent should not be
followed blindly by follower search agents. A search agent therefore decides prob-
abilistically whether to forage along a new path or to follow along an existing
trail at each node that it visits. This allows search agents to selectively explore
trail-less paths in the P2P network. We have also assumed, perhaps a bit naively,
that the probablistic decision to follow a trail also reflects the search agent’s re-
liability about the trail information.

The path explored by a foraging search agent is determined from referrals
to neighboring node addresses obtained from every node that the search agent
visits. The node referral algorithm uses an adaptive node ranking mechanism
to accommodate dynamic joining and leaving of nodes in a P2P network. The
next section specifies the algorithm for intelligent resource discovery used by the
search agents in our system.

4.1 Algorithm for Intelligent Resource Discovery

The steps of the intelligent resource discovery algorithm are as follows:

190 P. Dasgupta

Information
Agent

3. Forage to referredNode
or continue to follow trail?

2. Send (localAvail, referredNode)

1. Provide origin, resource name and search−type

Search Agent

Agent Server on Remote Node #1

Controller
Agent

1. Get resource
query from user

Search Agent

2. Provide search boundary, resource name and itinerary

3. Dispatch Search Agent on itinerary

Agent Server on Origin Node

Search agent
moves to remote node

Other sites visited by
search agent

after resource is located
or if search boundary is reached

Search agent reverts to origin

G
U
I

Fig. 1. Schematic for the intelligent the resource discovery protocol showing different
agents and their interactions.

1. The controller agent on the origin node obtains the query containing the
resource name and other attributes from the user through a GUI.

2. The controller agent creates a mobile search agent and provides it with a
search boundary. The search boundary specifies the maximum number of
nodes the search agent should visit before abandoning the search in case the
resource is not located.

3. The search agent probabilistically decides whether to follow an existing trail
or to forage along a trail-less path. The probability value is drawn from
a uniform distribution U [min, max] where min and max are determined
experimentally from the minimum and maximum probabilities of foraging
that optimize the number of hops made by a search agent to locate a resource.
If the origin node has no trail information obtained by a previously created
foraging search agent, the decision is to forage.

4. The itinerary of a follower search agent comprises the node addresses con-
tained in the trail it is following. The itinerary of a foraging search agent
contains the addresses of nodes returned during the node discovery phase.

5. The search agent visits each site on its itinerary. At each node the search
agent interacts with the information agent present on the node. The search
agent reveals the address of its origin, the name of the resource it is looking
for, and its search type (forage or follow) to the information agent.

6. The information agent reponds with a pair of values (localAvailabity, re-
ferredNode). The former value has boolean type and denotes whether the
resource is available locally on the node being currently visited. If the re-
source is not locally available, the latter value denotes the address of a node
which lies along a path to resourceful nodes. The address of referredNode is
determined using the node referral algorithm described in Section 4.2.

Improving Peer-to-Peer Resource Discovery 191

7. If (localAvailability == true) the search agent reverts to its origin with the
address of the current node on which the resource was located. The trail
consisting of the addresses of nodes visited by the search agent is stored
within the origin node for use by follower agents for later resource queries
originated from the same node.

8. If (localAvailability == false) and the search agent is a follower, the search
agent decides probabilistically whether to remain a trail-follower or to begin
foraging. Foraging search agents are forwarded to referredNode while follower
search agents continue along their trail. The probability value is drawn from
the uniform distribution U [min, max] where min and max are determined
experimentally as before. If a follower search agent chooses to become a
foraging search agent it continues to behave as a foraging search agent on
subsequent sites it visits. The transition of a follower agent into a foraging
agent also enables efficient resource location. As more and more queries
are initiated by nodes within the network, the number of trails leading to
resourceful nodes goes on increasing. If a new resourceful node joins the
network at this time there would be no trails leading to it because no foraging
agents have visited it before. If follower agents always followed their trail
without ever foraging, they would never be able to locate possibly useful
resources on the newly joined node. Occasional foraging enables the search
agent to investigate trail-less paths that can possibly lead to newly joined
resourceful nodes.

9. If the search agent reaches its search boundary before the resource is located
it reverts to its origin and reports unavailability of the resource within the
P2P network.

The ratio between followers and foraging agents varies dynamically depending
on the progress of the search. At every hop along its trail a follower agent decides
whether begin foraging instead of following its trail with a probability p. After
i hops the ratio between the foragers and followers is given by:

r =
1

(1 − p)i
− 1.

A high value of p (close to 1) creates many foraging agents which leads to an
inefficient blind search. On the other hand, a low value of p(close to 0) leads to
excessive trail following and is inefficient in discovering resources along trail-less
path or on newly joined nodes. The ratio between foraging and follower agents
given above implies that there are many follower agents when nodes close to the
origin of the search query are being searched (i is small). As the search proceeds
(i increases) and follower agents visit successive remote locations unsuccessfully,
more and more followers transition to foraging to explore trail-less paths for the
resource. In the worst case, when the resource is not located after a large number
of hops (i is large) and the search boundary is not yet reached, every follower
agent becomes a foraging agent.

The information agent on a node maintains three hashtables to enable node
referrals. The resourceTable contains information about resources locally present

192 P. Dasgupta

within the node. The visitedAgentTable maintains information about search
agents from other nodes that have visited the current node. The key of this
hashtable is the origin of the visited search agent. The other attributes of the
table are resourceName and forwardedNode which denote the name of the re-
source that the last search agent from origin was searching for and the node
to which that search agent was forwarded respectively. The entries of the for-
wardingTable contain the addresses of neighbor nodes of the current node and
a corresponding rank for each neighbor node used to determine referrals. The
neighbor addresses are discovered during the node discovery phase. The rank of
a node is dynamically updated depending on the availability of resources along
paths containing the node. While giving a referral to a search agent, a node with
a higher rank is given more preference; ties between nodes with the same rank
are broken at random.

4.2 Node Referral Algorithm

Our node referral algorithm is based on the premise that a route or trail that
leads to the discovery of one resource is likely to be a successful trail for discov-
ering future resources as well. We believe that this is a reasonable assumption
because studies of P2P networks [7,14] show that nodes are either altruistic and
share many resources or are ungenerous and share few or no resources. Our
node referral algorithm gives preference to referrals for nodes that are altrustic
or those that lie along a path to altruistic nodes. The flow diagram for the
node referral algorithm is shown in Figure 2. Initially all neighbor nodes in the
forwardingTable have the same rank (zero). When a search agent arrives on a
node it provides its origin, resource name and search type (forage or follow) to
the information agent on that node. The algorithm for determining the values
(localAvailablity, referredNode) returned to the search agent by the information
agent are illustrated in Figure 2. Key features of the algortihm are described as
follows:

1. If the resource is not available locally the visitedAgentTable is checked to
determine whether a search agent from the same origin had visited the node
earlier.

2. Since only one search agent is created for a particular resource query, if
a search agent from the same origin has already visited the current node
searching for the same resource, the current path of the search agent con-
tains a cycle. Cycles within trails are eliminated by setting referredNode to
highest ranked node in the forwardingTable excluding the node to which the
previous search agent from the same origin looking for the same resource
was forwarded.

3. If the search agent is a foraging agent set referredNode as the node with
the current highest rank inside forwardingTable and update the forwarded
node entry inside the visitedAgentTable for the the search agent’s origin with
referredNode.

Improving Peer-to-Peer Resource Discovery 193

localAvail = false;

fwdNode = VAT[origin].getForwardedNode();

VAT[origin].getResourceName() ?
Is resourceName ==

referredNode = Node with highest rank
from FT excluding fwdNode

localAvail = false;

searchType

== forage ?

Search agent arrives

on node and submits

origin, resourceName

and searchType

Yes

No

localAvail = true;

referredNode = NULL;

Is

origin inside

VAT ?

Is

available?

resource locally

Yes

Yes

No

Yes

FT[fwdNode].incrementRank();

No

No

referredNode = FT.getHighestRankedNode();

localAvail = false;

VAT[origin].setForwardedNode(referredNode);

referredNode = FT.getHighestRankedNode();

Fig. 2. Flow diagram for node referral algorithm used by the information agent on
a node. VAT and FT are abbreviations for visitedAgentTable and forwardingTable re-
spectively.

4. If the search agent is a follower agent it means that the current node lies
along a trail that has been foraged earlier by a foraging search agent from
the same origin. The follower search agent arrived on the node because the
earlier foraging had led to a successful resource discovery, and, therefore, a
trail including the current node had been constructed. This implies that the
node that was referred to the earlier foraging agent(fwdNode in Figure 2)
is a node along a path to a resourceful node. Therefore, the rank of node
fwdNode in the forwardingTable is incremented by one. referredNode is once
again set to the node with the current highest rank in the forwardingTable.

When a node leaves the network, its neighbor node entry is removed from the
forwardingTable on all nodes which had the leaving node as a neighbor so that
its address can no longer be given as a valid referredNode. When a node joins

194 P. Dasgupta

the network its address is added to the forwardingTable on its neighbor nodes
determined by the node discovery protocol. The rank of the neighbor nodes of
the newly joined node is set to zero within its forwardingTable is set to zero. The
rank of the newly joined node in other nodes’ forwardingTable is set to a random
value distributed uniformly between the current highest and lowest ranks within
each forwardingTable. The random selection of a rank value ensures that the
newly joined node also gets a fair chance to be given as a referredNode to some
search agent.

5 Experimental Results

We have used the Java based IBM Aglets SDK [9] to implement as our mobile
agent platform. The P2P network used for our simulation contained N = 10
nodes. The message boundary for a resource query was selected random between
N/2 and 2N/3 hops. Based on a study of resource sharing by nodes in P2P
networks[14] N/3 of the nodes were resourceful (more than 20 resources per
node) while the rest were scarce in resources (5 or less resources per node).
Since our objective is to analyze our resource discovery algorithm, we assumed
that the P2P network has already been set up by the node discovery protocol
and the forwardingTable at each node was already initialized. All resource queries
were initiated from the same node and a resourceful node was at least 3 hops
away from the origin. All results were averaged over 4 simulation runs.

Figure 3(a) shows the effect of varying the probability p with which a search
agent decides to forage at each node that it visits. p = 0 means that the search
agent is always a follower. However, to set up the first trail in the network at least
one foraging agent needs to be created. Therefore, we started our simulations
with a small value of p = 0.05 and gradually increased p towards 1.0. The results
of our experiments illustrate that resources were located with the least number
of hops when the search agent combines following and foraging with a slight
preference towards foraging(p = 0.55 to 0.65). The average number of hops to
locate a resource with these values of p is 0.45 ∗ N . With query flooding, the
number of messages in the worst case is (N −1). Therefore, the traffic generated
by the agent enabled resource discovery algorithm is less thanquery flooding.
We believe the reason for the preference to foraging is due to the fact that
resources are present of different nodes and trail following tends to lead to the
node that had been previously resourceful for a different resource. Therefore,
follower search agents alone are inadequate to accommodate variable location of
the resource in subsequent queries.

Our next simulation shows the result of nodes joining and leaving the P2P
network on our resource discovery algorithm in Figure 3(b). For this set of sim-
ulations we have set p = 0.6 as the foraging probability based on the results
from our previous experiment. We start with N = 10 and selectively remove
and add nodes. First we successively removed nodes with scarce resources(t1 in
Figure 3(b)) until the network contains more then N/2 resourceful nodes. This
allows resources to be located more easily in the network and the number of hops

Improving Peer-to-Peer Resource Discovery 195

Fig. 3. Average number of hops to locate a resource with (a) different values of the
probability of foraging used by search agents and (b) nodes joining and leaving the
P2P network dynamically.

to locate a resoure reduces. Next we restored the nodes with scarce resources
and successively removed the resourceful nodes(t2). Consequently, the number of
hops to locate a resource increased as the network got more and more popluated
with nodes that are scarce in resources. Finally, we introduced two resourceful
nodes in the network(t3) and the number of hops required to locate resources
slightly diminished.

In the previous experiment we had assumed that a resource does not get
shared with other nodes after it is downloaded to concentrate on the performance
of our resource discovery algorithm in response to dynamic addition and removal
nodes in the network. When resources are shared after downloading, the nodes
that are initially scarce in resources become resourceful and resources get located
more rapidly. In such a scenario, follower search agents are more successful in
locating resources (the optimum value of p shown in Figure 3(a) reduces to
around 0.4) as resources become more available. Therefore, in a P2P network in
which most nodes are resourceful, following is a preferred strategy over foraging.

6 Related Work

P2P systems have become an area of active research and development since
the popularity of online resource sharing services such as Freenet [5], Gnutella
[6], Napster[10] and SETI@home[15]. The most common techniques for P2P re-
source discovery include query flooding [6,10] and distributed hash tables(DHT).
Query flooding produces considerable network traffic by blindly forwarding the
query across the network. Some researchers have also proposed controlled query
flooding using rumor mongering protocols[11]. Improvements to query flooding
include strategic placement of resources on nodes within distributed hash ta-
bles(DHT) to improve resource availability and enable rapid lookup[16,13,20].
However, DHT-s require additional overhead in the form of updates to local

196 P. Dasgupta

hash tables within a node when nodes and resources join or leave the network,
and, forwarding the updates to neighbor nodes. Enhancements to DHT based
techniques include clever routing algorithms and strategic selection of the up-
date set among the neighbor nodes[12,17], super-peer networks[19], and text
based content ranking[3]. However, query flooding and DHT based techniques
focus more on resource management and do not incorporate the information
obtained from previous resource queries for future searches. Our mobile agent
based resource discovery algorithm uses trails to direct future searches towards
previously located resourceful nodes.

The Anthill framework[1] employs intelligent agents for node and resource
discovery. Mobile agents called ants move across the nodes in a P2P network
to discover resources. In anthill, InsertAnts are used to disseminate information
about resources from one node to another while SearchAnts move across nodes
to discover resources. Ants backtrack along the path they travelled and update
routing tables at each node to enable future ants to locate resources more effi-
ciently. In contrast our algorithm avoids table updates at each node along the
path of every ant and uses the trail traced by a search agent as a referral for
directing future search agents in the possible direction of the resource.

7 Conclusion and Future Work

In this paper, we have described an algorithm for intelligent resource discovery
in a P2P system using mobile intelligent agents. The simulation results obtained
from our system indicates that an informed search technique for resource dis-
covery based on trails established from previous searches improves the resource
discovery protocol a P2P network.

This work is the first step in our research on agent enabled P2P systems. We
envisage that a significant improvement can be obtained in the resource discov-
ery protocol if a node originating a resource query sends multiple search agents
to search for the resource. We are currently developing a controlled flooding al-
gorithm that dispatches search agents for an optimal cover of the P2P network.
Another enhancement to the algorithm described in this paper allows search
agents from different nodes can exchange trail information with each other. Ap-
propriate techniques need to be developed to ensure the security and reliability
of shared trail information. Finally, we are working on reliable and secure P2P
interactions and studying the overhead of secure communication between agents
in a P2P system.

The P2P system described in this paper is a simulation of P2P network using
agent servers to model peer nodes. In the future, we plan to overlay our agent
framework over a P2P community such as JXTA[8] to compare the performance
of agent enabled intelligent P2P systems with traditional P2P networks. From
our preliminary results described in this paper, we envisage that agent enabled
P2P systems are likely to compare favorably with network based P2P systems.

Improving Peer-to-Peer Resource Discovery 197

References

1. O. Babaoglu, H. Meling and A. Montresor, “Anthill: A framework for the develop-
ment of agent-based peer-to-peer systems,” Proceedings of the 22nd International
Conference on Distributed Computing Systems, Vienna, Austria, 2002, pp. 15-22.

2. E. Bonabeau, M. Dorigo, G. Theraulaz, “Swarm Intelligence: From Natural to
Artificial Systems,” Oxford University Press, 1999.

3. F. Cuenca-Acuna, C. Peery, R. Martin, and T. Nguyen, “PlanetP: Using gossip-
ing to build content addressable peer-to-peer information sharing communities,”
Technical Report, DCS-TR-487, Department of Computer Science, Rutgers Uni-
versity,2002.

4. P. Dasgupta, “Incentive Driven Node Discovery in a P2P Network Using Mobile In-
telligent Agents,” (to appear) Proceedings of the Seventh International Conference
on Artificial Intelligence, Las Vegas, NV, June 2003.

5. Freenet, URL http://www.freeproject.org
6. Gnutella, URL http://www.gnutella.com
7. P. Golle, K. Leyton-Brown I. Mironov and M. Lillibridge, “Incentives for shar-

ing in peer-to-peer networks,” Proceedings of the 2nd International Workshop on
Electronic Commerce, (Lecture Notes in Computer Science, vol. 2232, Springer
Verlag), Heidelberg, Germany, 2001, pp. 75-87.

8. JXTA URL http://www.jxta.org
9. D. Lange and M. Oshima, “Programming and deploying java mobile agents with

aglets,” Addison Wesley, 1998.
10. Napster, URL http://www.napster.com
11. M. Portmann and A. Seneviratne, “Cost-effective broadcast for fully decentralized

peer-to-peer networks,” Computer Communication, Special Issue on Ubiquitous
Computing, Elsevier Science, Autumn 2002.

12. S. Ratnasamy, P. Francis, M. Handley, R. Karp, and S. Shenker, ”A scalable
content-addressable network,” Proceedings of ACM SIGCOMM, San Diego, CA,
USA, 2001, pp. 161-172.

13. A. Rowstron and P. Druschel, ”Pastry: Scalable, distributed object location and
routing for large-scale peer-to-peer systems”, Proceedings of the IFIP/ACM Inter-
national Conference on Distributed Systems Platforms (Middleware), Heidelberg,
Germany, 2001, pp. 329-350.

14. S. Saroiu, K. Gummadi, and S. Gribble, “A measurement study of peer-to-peer file
sharing systems, In MMCN, Jan. 2002.

15. SETI URL http:// setiathome.ssl.berkeley.edu
16. I. Stoica, R. Morris, D. Karger, F. Kaashoek, and H. Balakrishnan, ”Chord: A

peer-to-peer lookup service for internet applications,” Proceedings of the ACM
SIGCOMM Conference, San Diego, CA, USA, 2001.

17. C. Tang, Z. Xu and M. Mahalingam, ”PeerSearch: Efficient Information retrieval
in P2P Networks,” Hewlett-Packard Labs, Technical Report HPL-2002-198, 2002.

18. B. Yang and H. Garcia-Molina, “Improving search in peer-to-peer networks,” Pro-
ceedings of the 22nd International Conference on Distributed Computing Systems
(ICDCS’02), Vienna, Austria, July 2002, pp. 5-14.

19. B. Yang and H. Garcia-Molina, “Designing a super-peer network,” Proceedings of
the 19th International Conference on Data Engineering, Bangalore, India, March
2003.

20. B. Y. Zhao, J. D. Kubiatowicz, and A. D. Joseph, “Tapestry: An infrastructure
for fault resilient wide-area location and routing,” Technical Report UCB CSD-01-
1141, University of California, Berkeley, 2001.

Mobile Agents for Locating Documents
in Ad Hoc Networks

Khaled Nagi1, Iman Elghandour1, and Birgitta König-Ries2

1 Computer Science Department, Faculty of Engineering, Alexandria University,
Egypt.

nagi@ipd.uni-karlsruhe.de, ielghand@alexeng.edu.eg
2 Institute for Program Structures and Data Organization, Universität Karlsruhe,

Germany.
koenig@ipd.uni-karlsruhe.de

Abstract. The wide availability of mobile devices equipped with wire-
less communication capabilities results in highly dynamic communities
of mobile users. An interesting application in such an environment is de-
centralized peer-to-peer file sharing. Locating files in a highly dynamic
network while minimizing the consumption of scarce resources is chal-
lenging. Since the availability of files changes significantly over time, an
asynchronous approach to searching is promising. In this paper, we show
why existing file sharing systems cannot be used here and introduce our
approach based on mobile agents.

1 Introduction

The growing number of mobile devices with wireless communication capabilities
has sparked interest in a new form of wireless networks: ad-hoc networks [1], [2],
[3]. These are collections of autonomous nodes that communicate by forming a
multi-hop wireless network maintaining connectivity without using underlying
infrastructure. From a user’s point of view, file sharing as in peer-to-peer sys-
tems like Gnutella [4] seems to be an attractive application for these networks.
However, existing P2P file exchange systems are not usable in ad-hoc networks
for the following reasons.

– The highly dynamic topology caused by the mobility of the nodes and fre-
quent (dis-)connections makes it hard to maintain overlay structures.

– The limited resources of the nodes in terms of power and memory capacity
severely restrict the amount of messages that can be send and the amount
of information that can be replicated across nodes.

– The limited bandwidth requires that traffic be kept minimal.

In this paper, we present a mobile agents based approach to asynchronous file
sharing [5] in ad-hoc networks, which complements the synchronous service dis-
covery, which we develop in the DIANE project [6].

G. Moro, C. Sartori, and M.P. Singh (Eds.): AP2PC 2003, LNAI 2872, pp. 198–204, 2004.
c© Springer-Verlag Berlin Heidelberg 2004

Mobile Agents for Locating Documents in Ad Hoc Networks 199

2 Application Scenario

Helped by subsidized programs, nowadays, more and more students (e.g., in our
campus at the University of Karlsruhe) are equipped with notebooks, tabletPCs,
or PDAs. Students use the devices to take notes in classes. Now, in order to
exchange notes (something that is routinely done), it is no longer necessary
to physically exchange and copy them, rather, an electronic exchange becomes
feasible. It is obvious that such information cannot be posted on a centralized
server and a sort of Gnutella on the ad-hoc network is needed. Consider, e.g.,
Anna, a computer science student. In two weeks, she has to pass a database exam.
Anna finds out that she needs (either electronically or as a hard copy) additional
information for her preparation such as lecture notes, solutions of exercises or a
collection of likely exam questions put together by older students. Anna is not in
a hurry, she just wants those documents before the exam. In return, she is willing
to offer her collection of documents to other students. Using the DIANE system,
she can search the nodes currently available in the network. However, it is quite
likely that at any given point in time not everybody who owns some information
will be part of the existing ad-hoc network. An alternative producing a more
complete result set is to propagate her request asynchronously.

Anna composes her request using a piece of software on her PDA: “Find notes
about SQL lectures and exercises. Format : PDF. Deadline: 05/28/03. Contact
information: I am daily at the library from 2 to 4 p.m., or you can mail to
anna@student.myUni.edu. Priority : low, increases after a week from now.”

As Anna meets Marc and Michael, her request is transferred to their PDAs.
However, neither of them possesses the document she needs. After a couple of
days Marc meets Susan and the request is passed on to her. She has some of
the documents Anna is interested in. Susan can send Anna an email with the
matching documents if electronically available or can request a physical meeting
for the handout.

Requests at the PDAs should not be immediately purged. They will reside
there and wait for further physical encounters in case they meet others with
relevant documents. Additionally, if a document, say Exercise5.doc, is found;
the search software will be intelligent enough to guess that there must be Exer-
cise1.doc to Exercise4.doc somewhere in the net. In this case, a search subtask
is started. This customized search intelligence will be programmed by Anna and
the code must be propagated together with the request. Once the deadline is
reached the requests are dropped. There are several technical challenges to be
considered in this scenario:

– Searching for documents must be done on a wider basis. That is why asyn-
chronous service discovery is considered in our work.

– Each node has its own semantics concerning the representation of meta-
information about the documents. This semantics must be understood by
the nodes issuing and receiving requests. There are a number of approaches
to this problem, e.g., the one used in the DIANE project [6].

– The number of nodes to which a request is propagated must be affected by the
approaching deadline. Clearly, we need a priority mechanism.

200 K. Nagi, I. Elghandour, and B. König-Ries

– Adaptation of the search plan. As search plan may be modified during the
course of the search, the plan should be, at least virtually, consolidated and
the partial results must be merged to fit the original search request.

In the following sections, we introduce our asynchronous mobile agents based
approach to searching documents in an ad-hoc network meeting these challenges.

3 System Architecture

A search operation consists of data about the request and code implementing the
search. For the search to be carried out, the data must be propagated through
the network, whereas propagating the code is dependent on the nature of the
application. Migrating both data and code is the basic definition of mobile agents
as we use them. Choosing the right degree of agency in the system depends on the
following factors: the non-monolithic nature of the system, the need for dynamic
code adaptation, definition of search plan, and security issues. An analysis of the
impact of each factor on our decision for using mobile agents can be found in [5].

We use the following system architecture to support search requests: The
life of an agent starts at the node initiating the request (root node). The agent
continually clones itself, dispatches the clones to neighboring nodes upon detect-
ing their presence, and hence propagates the request through the network. If a
document is found at a node, the agent informs the root node that issued the
request. The current framework supports three contact methods: directly if the
root node is within radio-range, through physical meeting using the information
in the request or through email.

Figure 1 illustrates the components of mobile agent and hosting platform.
Both are implemented using J2ME. The service discoverer implements the search
intelligence. Based on the description of the search request, it communicates with
the hosting environment for service discovery through the interaction manager.
Upon discovery of a document, the contact information is sent to the hosting
environment to establish the peer-to-peer communication and the information
interchange. The persistence manager governs the life-cycle of the agent (see Sec-
tion 4). The migration manager establishes the negotiation before code cloning
and transfer. The hosting platform maintains a directory of information services
that the owner of the device is willing to share and a domain ontology used for
matching. The query processor answers the search requests. The communication
manager interacts with the outside world.

4 Agent Operation

The following problem arises when an agent is cloned and the child agent mi-
grates: During agent cloning, information is transferred from parent to child.
Shortly after migration, while the node on which the parent resides and the
one the child migrated to are still within radio range, information can be com-
municated from the child to the parent. Later on, as nodes move or leave the

Mobile Agents for Locating Documents in Ad Hoc Networks 201

Fig. 1. Architecture of the mobile agent and the hosting platform.

network, this is no longer true. Thus, nodes cannot communicate control param-
eters to their ancestor nor to older siblings. In the following, we try to make the
best possible estimation of these parameters. They are related to the documents
found, the agent’s age in the network, its priority, and the clustering behavior of
the nodes in the network. Before explaining the agent life cycle in detail, we in-
vestigate these parameters and their interrelations and present our approach to
estimating their values taking into account the lack of communication between
arbitrary agents in the hierarchy.

In the following, we denote an agent a’s parameter as p (p(a)) whenever we
are looking at it from within (outside) the agent. Also, we use a.parent to denote
a’s parent, a.root to denote the initial agent issuing the request, and a.known rel
to denote the set of agents known to the agent (including agents along the path
from the root agent to this agent, older siblings along this path, and current
direct children).

Document relevance. Denoted R(i), where i is a document at a node,
is an index of the relevance degree [0..1] of a document in accordance to the
requested document description. In DIANE, methods to estimate R(i) are being
developed.

Hit ratio. The Hit Ratio (HR) is the ratio of documents discovered until
now to the whole set requested by the root node. This can be formulated as:

HR = Nf/Nt (1)

where Nf is the total number of relevant documents found at this node, Nt is the
number of topmost documents the user is interested in. However, due to the lack
of continuous information flow between all agents of the same origin, maintaining
a global HR is not possible. Each agent has only an estimate based on its known
relatives, denoted HR(a.known rel): children of a node send feedback with the
number of matching documents found locally (right after migration, i.e., while
radio connection still exists). The parent node determines the total number of
documents found by its children to provide future children with a better estimate

202 K. Nagi, I. Elghandour, and B. König-Ries

of the hit ratio. The fruitfulness of the search along a path is thus indicated by
a combination of HR(a.known rel) and its rate of change along the path from
a.root to a, denoted HR′(a.known rel).

Hop count. In contrast to typical file sharing and exchange systems, the
Hop Count (HC) is made variable to provide an early pruning of a path in the
network that is not promising and to allow to longer pursue paths in fruitful
areas of the network.

HC(a) =
{

HC(a.parent) + f(HR(a.known rel), HR′(a.known rel)) ; HR′(a.known rel) ≥ T
HC(a.parent) − 1 ; HR′(a.known rel) < T

(2)
where T is the threshold and f is a suitable function.

Clustering ratio. The Clustering Ratio (CR) represents the rate of change
in the list of physical recent neighbors (rn) of a node within a time window t.
This is a list maintained by each agent, which contains all the nodes that the
agent has sensed in its physical proximity. CR is the ratio between the new nodes
added to the whole size of the list;

CR = NDch/NDsz (3)

where NDch is the number of new nodes added to the recent neighbor list and
NDsz is the total size of the recent neighbor list. If the CR is above a certain
threshold the node is entering a new community and the agent should intensify its
efforts to propagate. A lower CR indicates that the community is currently stable
and, hence, the agent should decrease its priority of populating the network.

Priority. In our system, we define two values for the priority (P) of an
agent.

P =
{

High ; PV ≥ T Priority
Low ; PV < T Priority

(4)

PV = f(deadline, CR, HR) (5)

The deadline is given the highest weight in this function. Additionally, we include
the effect of the clustering ratio and the hit ratio in our calculation.

Depending on the control parameters governing its execution and the search
plan embedded in the agent, the life cycle of a non-root agent1 will vary. A typical
life cycle is shown in Figure 2-left. The agent can be in one of the following states.

– Initial processing at the node upon its arrival (st1): The agent checks for
the availability of enough system resources depending on the initial priority
for the agent. Eventually, it may decide to kill the agent (ev0) (see Figure
2-right for details).

– In a waiting state (st2): The agent remains waiting for events to occur or a
killing decision is taken by either itself or the hosting platform.

1 The life cycle of the root node differs slightly since it is the request initiator and it
receives the matching documents/invitations for meetings.

Mobile Agents for Locating Documents in Ad Hoc Networks 203

st1: initial
processing

st5: idlest2:
waiting

st9:
terminate

st7: contact
root agent

st4: recompute
priority

st6:dispatch a
clone to neighbor

st8: spawn
a new agent

this spawned agent will
reside on this node and
start cloning itself to other
neighboring nodes

st3: modify
plan

ev6

ev1

ev0

ev5 ev2
ev4

ev1

ev7

ev3

to st9

Resources
Available=True

Priority= High

NO

choose an agent to Kill
Host this agent and update

Resource Availability

YES

search for the doc in
document List

found

HC(a)=0

Update document List
and HitRatio

Contact root
node

contact parent
node

to st2

YES

NO

YES

YES

NO

NO

Fig. 2. Agent life cycle at a non-root node.

– Modifying the agent plan (st3): The local plan at this node must be merged
and modified. This modification takes place if an arriving agent happens to
be a clone with a newer plan (ev1).

– Re-computing priority (st4): Occurs when one of the parameters affecting
the priority changes (ev2).

– In an idle state (st5): Entered if the CR is below a certain level (ev3).
– Dispatching a clone to a neighboring node (st6): Occurs if a neighbor is

sensed (ev4). If the agent, with its current status of plans and intermediate
results, is not in the physical recent neighbors list, the cloning and dispatch-
ing take place.

– Contacting the root agent (st7): Takes place if matching documents are found
(ev5), it may lead to spawning a new agent (st8) if a subplan is created (ev6).

– Terminating state (st9): The agent kills itself (if the deadline of the request is
reached, its HC reaches zero, or a newer copy with an updated plan arrives),
or is killed by a decision of the hosting platform due to lack of resources (ev7).

5 Future Work

Currently, we are working on an extensive simulation model to analyze the be-
havior of the system; in parallel we are developing a functional prototype to be
used as a test bed at our campus. In our analysis, we concentrate on perfor-
mance metrics, such as the degree of propagation of agents within the network
as compared to the purely synchronous approach. We also investigate the im-
pact of each of the control parameters on the performance of the mobile agents
and the resource consumption in the network in terms of superfluous migrations.

204 K. Nagi, I. Elghandour, and B. König-Ries

Here, we target some good settings of the control parameters before the actual
deployment.

References

1. Corson, S., Macker, J.: Mobile ad-hoc networking (manet): Routing protocol per-
formance issues and evaluation considerations. RFC 2501 (1999)

2. Koodli, R., Perkins, C.: Service discovery in on-demand ad-hoc networks. Manet
working group internet draft (2002)

3. Wu, J., Zitterbart, M.: Service awareness and its challenges in mobile ad-hoc net-
works. In: Proc. of the GI Jahrestagung. LNI (2001)

4. Gnutella File Sharing, http://gnutella.wego.com
5. Nagi, K., König-Ries, B.: Asynchronous service discovery in mobile ad-hoc net-

works. In: Proc. of the Workshop “Persistence, Scalability, Transactions - Database
Mechanisms for Mobile Applications”. LNI (2003)

6. DIANE: Dienste in Ad-hoc-Netzen. (Services in Ad-hoc Networks),
http://www.ipd.uni-karlsruhe.de/Diane

Author Index

Adami, Giordano 174

Bergamaschi, Sonia 113
Bonifacio, Matteo 174
Bouquet, Paolo 174
Brazier, Frances 59
Busetta, Paolo 174

Cha, Shi-Cho 41
Cleary, David 144
Cranefield, Stephen 150

Dasgupta, Prithviraj(Raj) 186

Elghandour, Iman 198

Guerra, Francesco 113

Holvoet, Tom 71

Jelasity, Márk 47
Joseph, Sam 101
Joung, Yuh-Jzer 41

König-Ries, Birgitta 198

Ling, Bo 138
Lue, Yu-En 41

Mamei, Marco 162
Moro, Gianluca 123

Nagi, Khaled 198
Ng, Wee Siong 1, 138

Nickles, Matthias 35
Nimis, Jens 89
Nowostawski, Mariusz 150

Obreiter, Philipp 89
Ogston, Elth 59
Oliveira, Marcos 150
Ooi, Beng Chin 1
Ouksel, Aris M. 123
Overeinder, Benno 59

Palmieri, Francesco 174
Parker, Daryl 144
Purvis, Martin 150

Schelfthout, Kurt 71
Shehory, Onn 13
Shu, YanFeng 138
Singh, Munindar P. 77

Tan, Kian-Lee 1

van Steen, Maarten 47, 59
Vassileva, Julita 23
Vincini, Maurizio 113
Voulgaris, Spyros 47

Wang, Yao 23
Weiß, Gerhard 35

Yu, Bin 77

Zambonelli, Franco 162
Zhou, AoYing 1, 138

	Frontmatter
	Paradigm Integration and Challenges
	Information Acquisition Through an Integrated Paradigm: Agent + Peer-to-Peer
	Robustness Challenges in Peer-to-Peer Agent Systems

	Trust
	Bayesian Network Trust Model in Peer-to-Peer Networks
	Agent-Based Social Assessment of Shared Resources
	A Passport-Like Service over an Agent-Based Peer-to-Peer Network

	Self-Organization
	A Robust and Scalable Peer-to-Peer Gossiping Protocol
	Group Formation Among Peer-to-Peer Agents: Learning Group Characteristics
	A Pheromone-Based Coordination Mechanism Applied in Peer-to-Peer

	Incentives
	Incentive Mechanisms for Peer-to-Peer Systems
	A Taxonomy of Incentive Patterns

	Search and Systems
	P2P MetaData Search Layers
	A Peer-to-Peer Information System for the Semantic Web
	G-Grid: A Class of Scalable and Self-Organizing Data Structures for Multi-dimensional Querying and Content Routing in P2P Networks
	Fuzzy Cost Modeling for Peer-to-Peer Systems
	A P2P Approach to ClassLoading in Java

	Adaptive Applications
	Multi-agent Interaction Technology for Peer-to-Peer Computing in Electronic Trading Environments
	Location-Based and Content-Based Information Access in Mobile Peer-to-Peer Computing: The TOTA Approach
	K-Trek: A Peer-to-Peer Approach to Distribute Knowledge in Large Environments

	Mobile Agents
	Improving Peer-to-Peer Resource Discovery Using Mobile Agent Based Referrals
	Mobile Agents for Locating Documents in Ad Hoc Networks

	Backmatter

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

